Statistical Modeling of Implicit Functional Relations

IF 0.9 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Stats Pub Date : 2023-08-25 DOI:10.3390/stats6030055
S. Lipovetsky
{"title":"Statistical Modeling of Implicit Functional Relations","authors":"S. Lipovetsky","doi":"10.3390/stats6030055","DOIUrl":null,"url":null,"abstract":"This study considers the statistical estimation of relations presented by implicit functions. Such structures define mutual interconnections of variables rather than outcome variable dependence by predictor variables considered in regular regression analysis. For a simple case of two variables, pairwise regression modeling produces two different lines of each variable dependence using another variable, but building an implicit relation yields one invertible model composed of two simple regressions. Modeling an implicit linear relation for multiple variables can be expressed as a generalized eigenproblem of the covariance matrix of the variables in the metric of the covariance matrix of their errors. For unknown errors, this work describes their estimation by the residual errors of each variable in its regression by the other predictors. Then, the generalized eigenproblem can be reduced to the diagonalization of a special matrix built from the variables’ covariance matrix and its inversion. Numerical examples demonstrate the eigenvector solution’s good properties for building a unique equation of the relations between all variables. The proposed approach can be useful in practical regression modeling with all variables containing unobserved errors, which is a common situation for the applied problems.","PeriodicalId":93142,"journal":{"name":"Stats","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stats","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats6030055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study considers the statistical estimation of relations presented by implicit functions. Such structures define mutual interconnections of variables rather than outcome variable dependence by predictor variables considered in regular regression analysis. For a simple case of two variables, pairwise regression modeling produces two different lines of each variable dependence using another variable, but building an implicit relation yields one invertible model composed of two simple regressions. Modeling an implicit linear relation for multiple variables can be expressed as a generalized eigenproblem of the covariance matrix of the variables in the metric of the covariance matrix of their errors. For unknown errors, this work describes their estimation by the residual errors of each variable in its regression by the other predictors. Then, the generalized eigenproblem can be reduced to the diagonalization of a special matrix built from the variables’ covariance matrix and its inversion. Numerical examples demonstrate the eigenvector solution’s good properties for building a unique equation of the relations between all variables. The proposed approach can be useful in practical regression modeling with all variables containing unobserved errors, which is a common situation for the applied problems.
隐函数关系的统计建模
本研究考虑了隐函数关系的统计估计。这种结构定义了变量的相互联系,而不是通过常规回归分析中考虑的预测变量来定义结果变量依赖性。对于两个变量的简单情况,成对回归建模使用另一个变量产生每个变量依赖性的两条不同线,但建立隐式关系会产生一个由两个简单回归组成的可逆模型。对多个变量的隐式线性关系建模可以表示为变量的协方差矩阵在其误差的协方差矩阵的度量中的广义本征问题。对于未知误差,这项工作通过其他预测因子对其回归中每个变量的残差来描述它们的估计。然后,广义本征问题可以简化为由变量的协方差矩阵建立的特殊矩阵的对角化及其逆。数值例子证明了特征向量解对于建立所有变量之间关系的唯一方程具有良好的性质。所提出的方法可用于所有变量都包含未观察到的误差的实际回归建模,这是应用问题的常见情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信