Quantitative robustness of instance ranking problems

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Tino Werner
{"title":"Quantitative robustness of instance ranking problems","authors":"Tino Werner","doi":"10.1007/s10463-022-00847-1","DOIUrl":null,"url":null,"abstract":"<div><p>Instance ranking problems intend to recover the ordering of the instances in a data set with applications in scientific, social and financial contexts. In this work, we concentrate on the global robustness of parametric instance ranking problems in terms of the breakdown point which measures the fraction of samples that need to be perturbed in order to let the estimator take unreasonable values. Existing breakdown point notions do not cover ranking problems so far. We propose to define a breakdown of the estimator as a sign-reversal of all components which causes the predicted ranking to be potentially completely inverted; therefore, we call it the order-inversal breakdown point (OIBDP). We will study the OIBDP, based on a linear model, for several different carefully distinguished ranking problems and provide least favorable outlier configurations, characterizations of the order-inversal breakdown point and sharp asymptotic upper bounds. We also compute empirical OIBDPs.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10463-022-00847-1.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-022-00847-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

Instance ranking problems intend to recover the ordering of the instances in a data set with applications in scientific, social and financial contexts. In this work, we concentrate on the global robustness of parametric instance ranking problems in terms of the breakdown point which measures the fraction of samples that need to be perturbed in order to let the estimator take unreasonable values. Existing breakdown point notions do not cover ranking problems so far. We propose to define a breakdown of the estimator as a sign-reversal of all components which causes the predicted ranking to be potentially completely inverted; therefore, we call it the order-inversal breakdown point (OIBDP). We will study the OIBDP, based on a linear model, for several different carefully distinguished ranking problems and provide least favorable outlier configurations, characterizations of the order-inversal breakdown point and sharp asymptotic upper bounds. We also compute empirical OIBDPs.

Abstract Image

实例排序问题的定量鲁棒性
实例排序问题旨在恢复在科学、社会和金融环境中应用的数据集中实例的顺序。在这项工作中,我们专注于参数实例排序问题在击穿点方面的全局鲁棒性,击穿点测量需要被扰动的样本的比例,以便让估计器取不合理的值。到目前为止,现有的分解点概念还没有涵盖排名问题。我们建议将估计量的分解定义为所有成分的符号反转,这导致预测的排名可能完全反转;因此,我们称之为序逆击穿点(OIBDP)。我们将研究基于线性模型的OIBDP,用于几个不同的仔细区分排序问题,并提供最不利的离群值配置,序逆击穿点的特征和锐渐近上界。我们还计算了经验oibdp。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信