Planar orthogonal polynomials and boundary universality in the random normal matrix model

IF 4.9 1区 数学 Q1 MATHEMATICS
H. Hedenmalm, Aron Wennman
{"title":"Planar orthogonal polynomials and boundary universality in the random normal matrix model","authors":"H. Hedenmalm, Aron Wennman","doi":"10.4310/acta.2021.v227.n2.a3","DOIUrl":null,"url":null,"abstract":"We prove that the planar normalized orthogonal polynomials $P_{n,m}(z)$ of degree $n$ with respect to an exponentially varying planar measure $e^{-2mQ(z)}\\mathrm{dA}(z)$ enjoy an asymptotic expansion \\[ P_{n,m}(z)\\sim m^{\\frac{1}{4}}\\sqrt{\\phi_\\tau'(z)}[\\phi_\\tau(z)]^n e^{m\\mathcal{Q}_\\tau(z)}\\left(\\mathcal{B}_{0,\\tau}(z) +\\frac{1}{m}\\mathcal{B}_{1,\\tau}(z)+\\frac{1}{m^2} \\mathcal{B}_{2,\\tau}(z)+\\ldots\\right), \\] as $n=m\\tau\\to\\infty$. Here $\\mathcal{S}_\\tau$ denotes the droplet, the boundary of which is assumed to be a smooth, simple, closed curve, and $\\phi_\\tau$ is a conformal mapping $\\mathcal{S}_\\tau^c\\to\\mathbb{D}_e$. The functions $\\mathcal{Q}_\\tau$ and $\\mathcal{B}_{j,\\tau}(z)$ are bounded holomorphic functions which may be computed in terms of $Q$ and $\\mathcal{S}_\\tau$. We apply these results to prove universality at the boundary for regular droplets in the random normal matrix model, i.e., that the limiting rescaled process is the random process with correlation kernel $$ \\mathrm{k}(\\xi,\\eta)= e^{\\xi\\bar\\eta\\,-\\frac12(\\lvert\\xi\\rvert^2+\\lvert \\eta\\rvert^2)} \\operatorname{erf}(\\xi+\\bar{\\eta}). $$ A key ingredient in the proof of the asymptotic expansion is the construction of an {orthogonal foliation} -- a smooth flow of closed curves near $\\partial\\mathcal{S}_\\tau$, on each of which $P_{n,m}$ is orthogonal to lower order polynomials, with respect to an induced measure. To compute the coefficients, we develop an algorithm which determines $\\mathcal{B}_{j,\\tau}$ up to any desired order in terms of inhomogeneous Toeplitz kernel conditions.","PeriodicalId":50895,"journal":{"name":"Acta Mathematica","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2017-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/acta.2021.v227.n2.a3","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 43

Abstract

We prove that the planar normalized orthogonal polynomials $P_{n,m}(z)$ of degree $n$ with respect to an exponentially varying planar measure $e^{-2mQ(z)}\mathrm{dA}(z)$ enjoy an asymptotic expansion \[ P_{n,m}(z)\sim m^{\frac{1}{4}}\sqrt{\phi_\tau'(z)}[\phi_\tau(z)]^n e^{m\mathcal{Q}_\tau(z)}\left(\mathcal{B}_{0,\tau}(z) +\frac{1}{m}\mathcal{B}_{1,\tau}(z)+\frac{1}{m^2} \mathcal{B}_{2,\tau}(z)+\ldots\right), \] as $n=m\tau\to\infty$. Here $\mathcal{S}_\tau$ denotes the droplet, the boundary of which is assumed to be a smooth, simple, closed curve, and $\phi_\tau$ is a conformal mapping $\mathcal{S}_\tau^c\to\mathbb{D}_e$. The functions $\mathcal{Q}_\tau$ and $\mathcal{B}_{j,\tau}(z)$ are bounded holomorphic functions which may be computed in terms of $Q$ and $\mathcal{S}_\tau$. We apply these results to prove universality at the boundary for regular droplets in the random normal matrix model, i.e., that the limiting rescaled process is the random process with correlation kernel $$ \mathrm{k}(\xi,\eta)= e^{\xi\bar\eta\,-\frac12(\lvert\xi\rvert^2+\lvert \eta\rvert^2)} \operatorname{erf}(\xi+\bar{\eta}). $$ A key ingredient in the proof of the asymptotic expansion is the construction of an {orthogonal foliation} -- a smooth flow of closed curves near $\partial\mathcal{S}_\tau$, on each of which $P_{n,m}$ is orthogonal to lower order polynomials, with respect to an induced measure. To compute the coefficients, we develop an algorithm which determines $\mathcal{B}_{j,\tau}$ up to any desired order in terms of inhomogeneous Toeplitz kernel conditions.
随机正规矩阵模型中的平面正交多项式与边界普适性
证明了阶$n$的平面归一化正交多项式$P_{n,m}(z)$对指数变化平面测度$e^{-2mQ(z)}\mathrm{dA}(z)$有渐近展开\[ P_{n,m}(z)\sim m^{\frac{1}{4}}\sqrt{\phi_\tau'(z)}[\phi_\tau(z)]^n e^{m\mathcal{Q}_\tau(z)}\left(\mathcal{B}_{0,\tau}(z) +\frac{1}{m}\mathcal{B}_{1,\tau}(z)+\frac{1}{m^2} \mathcal{B}_{2,\tau}(z)+\ldots\right), \]为$n=m\tau\to\infty$。其中$\mathcal{S}_\tau$表示液滴,假设液滴边界为光滑、简单、封闭曲线,$\phi_\tau$为保角映射$\mathcal{S}_\tau^c\to\mathbb{D}_e$。函数$\mathcal{Q}_\tau$和$\mathcal{B}_{j,\tau}(z)$是有界全纯函数,可以用$Q$和$\mathcal{S}_\tau$来计算。我们应用这些结果来证明随机正态矩阵模型中规则液滴在边界处的普适性,即极限重标过程是具有相关核的随机过程$$ \mathrm{k}(\xi,\eta)= e^{\xi\bar\eta\,-\frac12(\lvert\xi\rvert^2+\lvert \eta\rvert^2)} \operatorname{erf}(\xi+\bar{\eta}). $$证明渐近展开的一个关键因素是{正交叶状}的构造——在$\partial\mathcal{S}_\tau$附近的一个平滑的闭曲线流,其中每个$P_{n,m}$与低阶多项式正交,相对于一个诱导测度。为了计算系数,我们开发了一种算法,该算法确定$\mathcal{B}_{j,\tau}$在非齐次Toeplitz核条件下的任何期望阶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Mathematica
Acta Mathematica 数学-数学
CiteScore
6.00
自引率
2.70%
发文量
6
审稿时长
>12 weeks
期刊介绍: Publishes original research papers of the highest quality in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信