Conditional estimates for the logarithmic derivative of Dirichlet L-functions

Pub Date : 2024-01-01 DOI:10.1016/j.indag.2023.07.005
Andrés Chirre , Markus Valås Hagen , Aleksander Simonič
{"title":"Conditional estimates for the logarithmic derivative of Dirichlet L-functions","authors":"Andrés Chirre ,&nbsp;Markus Valås Hagen ,&nbsp;Aleksander Simonič","doi":"10.1016/j.indag.2023.07.005","DOIUrl":null,"url":null,"abstract":"<div><p><span>Assuming the Generalized Riemann Hypothesis, we establish explicit bounds in the </span><span><math><mi>q</mi></math></span><span>-aspect for the logarithmic derivative </span><span><math><mrow><mfenced><mrow><msup><mrow><mi>L</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>/</mo><mi>L</mi></mrow></mfenced><mfenced><mrow><mi>σ</mi><mo>,</mo><mi>χ</mi></mrow></mfenced></mrow></math></span> of Dirichlet <span><math><mi>L</mi></math></span>-functions, where <span><math><mi>χ</mi></math></span><span> is a primitive character modulo </span><span><math><mrow><mi>q</mi><mo>≥</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>30</mn></mrow></msup></mrow></math></span> and <span><math><mrow><mn>1</mn><mo>/</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo>/</mo><mo>log</mo><mo>log</mo><mi>q</mi><mo>≤</mo><mi>σ</mi><mo>≤</mo><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mo>log</mo><mo>log</mo><mi>q</mi></mrow></math></span>. In addition, for <span><math><mrow><mi>σ</mi><mo>=</mo><mn>1</mn></mrow></math></span> we improve upon the result by Ihara, Murty and Shimura (2009). Similar results for the logarithmic derivative of the Riemann zeta-function are given.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723000691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Assuming the Generalized Riemann Hypothesis, we establish explicit bounds in the q-aspect for the logarithmic derivative L/Lσ,χ of Dirichlet L-functions, where χ is a primitive character modulo q1030 and 1/2+1/loglogqσ11/loglogq. In addition, for σ=1 we improve upon the result by Ihara, Murty and Shimura (2009). Similar results for the logarithmic derivative of the Riemann zeta-function are given.

分享
查看原文
狄利克雷l函数的对数导数的条件估计
假设广义黎曼假说成立,我们在 q 方面为狄利克特 L 函数的对数导数 L′/Lσ,χ 建立了明确的边界,其中 χ 是基元字符,模数为 q≥1030 且 1/2+1/logq≤σ≤1-1/logq.此外,当 σ=1 时,我们改进了 Ihara、Murty 和 Shimura(2009 年)的结果。对于黎曼zeta 函数的对数导数,我们也给出了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信