Conditional estimates for the logarithmic derivative of Dirichlet L-functions

IF 0.5 4区 数学 Q3 MATHEMATICS
Andrés Chirre , Markus Valås Hagen , Aleksander Simonič
{"title":"Conditional estimates for the logarithmic derivative of Dirichlet L-functions","authors":"Andrés Chirre ,&nbsp;Markus Valås Hagen ,&nbsp;Aleksander Simonič","doi":"10.1016/j.indag.2023.07.005","DOIUrl":null,"url":null,"abstract":"<div><p><span>Assuming the Generalized Riemann Hypothesis, we establish explicit bounds in the </span><span><math><mi>q</mi></math></span><span>-aspect for the logarithmic derivative </span><span><math><mrow><mfenced><mrow><msup><mrow><mi>L</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>/</mo><mi>L</mi></mrow></mfenced><mfenced><mrow><mi>σ</mi><mo>,</mo><mi>χ</mi></mrow></mfenced></mrow></math></span> of Dirichlet <span><math><mi>L</mi></math></span>-functions, where <span><math><mi>χ</mi></math></span><span> is a primitive character modulo </span><span><math><mrow><mi>q</mi><mo>≥</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>30</mn></mrow></msup></mrow></math></span> and <span><math><mrow><mn>1</mn><mo>/</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo>/</mo><mo>log</mo><mo>log</mo><mi>q</mi><mo>≤</mo><mi>σ</mi><mo>≤</mo><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mo>log</mo><mo>log</mo><mi>q</mi></mrow></math></span>. In addition, for <span><math><mrow><mi>σ</mi><mo>=</mo><mn>1</mn></mrow></math></span> we improve upon the result by Ihara, Murty and Shimura (2009). Similar results for the logarithmic derivative of the Riemann zeta-function are given.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 1","pages":"Pages 14-27"},"PeriodicalIF":0.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723000691","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

Assuming the Generalized Riemann Hypothesis, we establish explicit bounds in the q-aspect for the logarithmic derivative L/Lσ,χ of Dirichlet L-functions, where χ is a primitive character modulo q1030 and 1/2+1/loglogqσ11/loglogq. In addition, for σ=1 we improve upon the result by Ihara, Murty and Shimura (2009). Similar results for the logarithmic derivative of the Riemann zeta-function are given.

狄利克雷l函数的对数导数的条件估计
假设广义黎曼假说成立,我们在 q 方面为狄利克特 L 函数的对数导数 L′/Lσ,χ 建立了明确的边界,其中 χ 是基元字符,模数为 q≥1030 且 1/2+1/logq≤σ≤1-1/logq.此外,当 σ=1 时,我们改进了 Ihara、Murty 和 Shimura(2009 年)的结果。对于黎曼zeta 函数的对数导数,我们也给出了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
74
审稿时长
79 days
期刊介绍: Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信