F. Aderibigbe, Sherif Ishola Mustapha, T. L. Adewoye, Ishaq Alhassan Mohammed, Adebola Bukola Gbadegesin, F. Niyi, Opeyemi Idowu Olowu, Akinpelumi Gabriel Soretire, H. B. Saka
{"title":"Qualitative role of heterogeneous catalysts in biodiesel production from Jatropha curcas oil","authors":"F. Aderibigbe, Sherif Ishola Mustapha, T. L. Adewoye, Ishaq Alhassan Mohammed, Adebola Bukola Gbadegesin, F. Niyi, Opeyemi Idowu Olowu, Akinpelumi Gabriel Soretire, H. B. Saka","doi":"10.18331/brj2020.7.2.4","DOIUrl":null,"url":null,"abstract":"Biodiesel properties are in general attributed to the composition and properties of the oil feedstock used, overlooking the possible impacts of the catalyst preparation details. In light of that, the impacts of different catalyst preparation techniques alongside those of different support materials on the yield, composition, and fuel properties of biodiesels produced from the same oil feedstock were investigated. More specifically, tri-metallic (Fe-Co-Ni) catalyst was synthesized through two different techniques (green synthesis and wet impregnation) using MgO or ZnO as support material. The generated catalyst pairs, i.e., Fe-Co-Ni/MgO and Fe-Co-Ni/ZnO prepared by wet impregnation and Fe-Co-Ni-MgO and Fe-Co-Ni-ZnO prepared by green synthesis (using leaf extracts) were used in the transesterification process of Jatropha curcas oil. Detailed morphological properties, composition, thermal stability, crystalline nature, and functional groups characterization of the catalysts were also carried out. Using Box-Behnken Design response surface methodology, it was found that the green-synthesized Fe-Co-Ni-MgO catalyst resulted in the highest biodiesel yield of 97.9%. More importantly, the fatty acid methyl ester (FAME) profiles of the biodiesels produced using the four catalysts as well as their respective fuel properties were different in spite of using the same oil feedstock.","PeriodicalId":46938,"journal":{"name":"Biofuel Research Journal-BRJ","volume":" ","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofuel Research Journal-BRJ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18331/brj2020.7.2.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 30
Abstract
Biodiesel properties are in general attributed to the composition and properties of the oil feedstock used, overlooking the possible impacts of the catalyst preparation details. In light of that, the impacts of different catalyst preparation techniques alongside those of different support materials on the yield, composition, and fuel properties of biodiesels produced from the same oil feedstock were investigated. More specifically, tri-metallic (Fe-Co-Ni) catalyst was synthesized through two different techniques (green synthesis and wet impregnation) using MgO or ZnO as support material. The generated catalyst pairs, i.e., Fe-Co-Ni/MgO and Fe-Co-Ni/ZnO prepared by wet impregnation and Fe-Co-Ni-MgO and Fe-Co-Ni-ZnO prepared by green synthesis (using leaf extracts) were used in the transesterification process of Jatropha curcas oil. Detailed morphological properties, composition, thermal stability, crystalline nature, and functional groups characterization of the catalysts were also carried out. Using Box-Behnken Design response surface methodology, it was found that the green-synthesized Fe-Co-Ni-MgO catalyst resulted in the highest biodiesel yield of 97.9%. More importantly, the fatty acid methyl ester (FAME) profiles of the biodiesels produced using the four catalysts as well as their respective fuel properties were different in spite of using the same oil feedstock.
期刊介绍:
Biofuel Research Journal (BRJ) is a leading, peer-reviewed academic journal that focuses on high-quality research in the field of biofuels, bioproducts, and biomass-derived materials and technologies. The journal's primary goal is to contribute to the advancement of knowledge and understanding in the areas of sustainable energy solutions, environmental protection, and the circular economy. BRJ accepts various types of articles, including original research papers, review papers, case studies, short communications, and hypotheses. The specific areas covered by the journal include Biofuels and Bioproducts, Biomass Valorization, Biomass-Derived Materials for Energy and Storage Systems, Techno-Economic and Environmental Assessments, Climate Change and Sustainability, and Biofuels and Bioproducts in Circular Economy, among others. BRJ actively encourages interdisciplinary collaborations among researchers, engineers, scientists, policymakers, and industry experts to facilitate the adoption of sustainable energy solutions and promote a greener future. The journal maintains rigorous standards of peer review and editorial integrity to ensure that only impactful and high-quality research is published. Currently, BRJ is indexed by several prominent databases such as Web of Science, CAS Databases, Directory of Open Access Journals, Scimago Journal Rank, Scopus, Google Scholar, Elektronische Zeitschriftenbibliothek EZB, et al.