Leijun Hu, Liwen Sheng, Jisong Yan, Ligong Li, M. Yuan, Fu Sun, F. Nian, Long Li, Jiaqing Liu, Shuai Zhou, Zhiming Liu
{"title":"Simultaneous Measurement of Distributed Temperature and Strain through Brillouin Frequency Shift Using a Common Communication Optical Fiber","authors":"Leijun Hu, Liwen Sheng, Jisong Yan, Ligong Li, M. Yuan, Fu Sun, F. Nian, Long Li, Jiaqing Liu, Shuai Zhou, Zhiming Liu","doi":"10.1155/2021/6610674","DOIUrl":null,"url":null,"abstract":"A multiparameter Brillouin fiber-optic sensor for distributed strain and temperature information measuring based on spontaneous scattering in a common communication optical fiber (the G. 652. D commercial fiber) is presented and experimentally demonstrated. Benefiting from the difference of the temperature and strain sensitivity from different Brillouin peaks with different acoustic modes, our proposed sensing configuration can be used to distinguish ambient temperature and applied strain at the same time, which is an excellent candidate to address the problem of cross-sensitivity in the classical Brillouin system. In the experimental section, using a 21.8 km sensing length of communication optical fiber, a temperature accuracy of 1.13°C and a strain accuracy of 21.46 μe are obtained simultaneously. Considering the performance we achieved now, the proposed innovation and experimental setup will have some potential applications in the field of fiber sensors.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":"2021 1","pages":"1-6"},"PeriodicalIF":1.8000,"publicationDate":"2021-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2021/6610674","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 4
Abstract
A multiparameter Brillouin fiber-optic sensor for distributed strain and temperature information measuring based on spontaneous scattering in a common communication optical fiber (the G. 652. D commercial fiber) is presented and experimentally demonstrated. Benefiting from the difference of the temperature and strain sensitivity from different Brillouin peaks with different acoustic modes, our proposed sensing configuration can be used to distinguish ambient temperature and applied strain at the same time, which is an excellent candidate to address the problem of cross-sensitivity in the classical Brillouin system. In the experimental section, using a 21.8 km sensing length of communication optical fiber, a temperature accuracy of 1.13°C and a strain accuracy of 21.46 μe are obtained simultaneously. Considering the performance we achieved now, the proposed innovation and experimental setup will have some potential applications in the field of fiber sensors.
期刊介绍:
International Journal of Optics publishes papers on the nature of light, its properties and behaviours, and its interaction with matter. The journal considers both fundamental and highly applied studies, especially those that promise technological solutions for the next generation of systems and devices. As well as original research, International Journal of Optics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.