New Investigation and Challenge for Spatiotemporal Drought Monitoring Using Bottom-Up Precipitation Dataset (SM2RAIN-ASCAT) and NDVI in Moroccan Arid and Semi-Arid Rangelands
Asmae Zbiri, Azeddine Hachmi, Dominique Haesen, Fatima Ezzahrae El Alaoui-Faris
{"title":"New Investigation and Challenge for Spatiotemporal Drought Monitoring Using Bottom-Up Precipitation Dataset (SM2RAIN-ASCAT) and NDVI in Moroccan Arid and Semi-Arid Rangelands","authors":"Asmae Zbiri, Azeddine Hachmi, Dominique Haesen, Fatima Ezzahrae El Alaoui-Faris","doi":"10.2478/eko-2022-0010","DOIUrl":null,"url":null,"abstract":"Abstract Remotely sensed soil moisture products showed sensitivity to vegetation cover density and soil typology at regional dryland level. In these regions, drought monitoring is significantly performed using soil moisture index and rainfall data. Recently, rainfall and soil moisture observations have increasingly become available. This has hampered scientific progress as regards characterization of land surface processes not just in meteorology. The purpose of this study was to investigate the relationship between a newly developed precipitation dataset, SM2RAIN (Advanced SCATterometer (SM2RAIN-ASCAT), and NDVI (eMODIS-TERRA) in monitoring drought events over diverse rangeland regions of Morocco. Results indicated that the highest polynomial correlation coefficient and the lowest root mean square error (RMSE) between SM2RAIN-ASCAT and NDVI were found in a 10-year period from 2007 to 2017 in all rangelands (R = 0.81; RMSE = 0.05). This relationship was strong for degraded rangeland, where there were strong positive correlation coefficients for NDVI and SM2RAIN (R = 0.99). High correlations were found for sparse and moderate correlations for shrub rangeland (R = 0.82 and 0.61, respectively). The anomalies maps showed a very good similarity between SM2RAIN and Normalized Difference Vegetation Index (NDVI) data. The results revealed that the SM2RAIN-ASCAT and NDVI product could accurately predict drought events in arid and semi-arid rangelands.","PeriodicalId":53683,"journal":{"name":"Ekologia Bratislava","volume":"41 1","pages":"90 - 100"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ekologia Bratislava","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/eko-2022-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract Remotely sensed soil moisture products showed sensitivity to vegetation cover density and soil typology at regional dryland level. In these regions, drought monitoring is significantly performed using soil moisture index and rainfall data. Recently, rainfall and soil moisture observations have increasingly become available. This has hampered scientific progress as regards characterization of land surface processes not just in meteorology. The purpose of this study was to investigate the relationship between a newly developed precipitation dataset, SM2RAIN (Advanced SCATterometer (SM2RAIN-ASCAT), and NDVI (eMODIS-TERRA) in monitoring drought events over diverse rangeland regions of Morocco. Results indicated that the highest polynomial correlation coefficient and the lowest root mean square error (RMSE) between SM2RAIN-ASCAT and NDVI were found in a 10-year period from 2007 to 2017 in all rangelands (R = 0.81; RMSE = 0.05). This relationship was strong for degraded rangeland, where there were strong positive correlation coefficients for NDVI and SM2RAIN (R = 0.99). High correlations were found for sparse and moderate correlations for shrub rangeland (R = 0.82 and 0.61, respectively). The anomalies maps showed a very good similarity between SM2RAIN and Normalized Difference Vegetation Index (NDVI) data. The results revealed that the SM2RAIN-ASCAT and NDVI product could accurately predict drought events in arid and semi-arid rangelands.
期刊介绍:
The Journal Ecology (Bratislava) places the main emphasis on papers dealing with complex characteristics of ecosystems. Treated are not only general, theoretical and methodological but also particular practical problems of landscape preservation and planning. The ecological problems of the biosphere are divided into four topics: ecology of populations: study of plant and animal populations as basic components of ecosystems, ecosystem studies: structure, processes, dynamics and functioning of ecosystems and their mathematical modelling, landscape ecology: theoretical and methodical aspects, complex ecological investigation of territorial entities and ecological optimization of landscape utilization,