Remarks Connected with the Weak Limit of Iterates of Some Random-Valued Functions and Iterative Functional Equations

IF 0.4 Q4 MATHEMATICS
K. Baron
{"title":"Remarks Connected with the Weak Limit of Iterates of Some Random-Valued Functions and Iterative Functional Equations","authors":"K. Baron","doi":"10.2478/amsil-2019-0015","DOIUrl":null,"url":null,"abstract":"Abstract The paper consists of two parts. At first, assuming that (Ω, A, P) is a probability space and (X, ϱ) is a complete and separable metric space with the σ-algebra 𝒝 of all its Borel subsets we consider the set 𝒭c of all 𝒝 ⊗ 𝒜-measurable and contractive in mean functions f : X × Ω → X with finite integral ∫ Ω ϱ (f(x, ω), x) P (dω) for x ∈ X, the weak limit π f of the sequence of iterates of f ∈ 𝒭c, and investigate continuity-like property of the function f ↦ π f, f ∈ 𝒭c, and Lipschitz solutions φ that take values in a separable Banach space of the equation φ(x)=∫Ωφ(f(x,ω))P(dω)+F(x). \\varphi \\left( x \\right) = \\int_\\Omega {\\varphi \\left( {f\\left( {x,\\omega } \\right)} \\right)P\\left( {d\\omega } \\right)} + F\\left( x \\right). Next, assuming that X is a real separable Hilbert space, Λ: X → X is linear and continuous with ||Λ || < 1, and µ is a probability Borel measure on X with finite first moment we examine continuous at zero solutions φ : X → 𝔺 of the equation φ(x)=μ⌢(x)φ(Λx) \\varphi \\left( x \\right) = \\mathord{\\buildrel{\\lower3pt\\hbox{$\\scriptscriptstyle\\frown$}}\\over \\mu } \\left( x \\right)\\varphi \\left( {\\Lambda x} \\right) which characterizes the limit distribution π f for some special f ∈ 𝒭c.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"34 1","pages":"36 - 44"},"PeriodicalIF":0.4000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2019-0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract The paper consists of two parts. At first, assuming that (Ω, A, P) is a probability space and (X, ϱ) is a complete and separable metric space with the σ-algebra 𝒝 of all its Borel subsets we consider the set 𝒭c of all 𝒝 ⊗ 𝒜-measurable and contractive in mean functions f : X × Ω → X with finite integral ∫ Ω ϱ (f(x, ω), x) P (dω) for x ∈ X, the weak limit π f of the sequence of iterates of f ∈ 𝒭c, and investigate continuity-like property of the function f ↦ π f, f ∈ 𝒭c, and Lipschitz solutions φ that take values in a separable Banach space of the equation φ(x)=∫Ωφ(f(x,ω))P(dω)+F(x). \varphi \left( x \right) = \int_\Omega {\varphi \left( {f\left( {x,\omega } \right)} \right)P\left( {d\omega } \right)} + F\left( x \right). Next, assuming that X is a real separable Hilbert space, Λ: X → X is linear and continuous with ||Λ || < 1, and µ is a probability Borel measure on X with finite first moment we examine continuous at zero solutions φ : X → 𝔺 of the equation φ(x)=μ⌢(x)φ(Λx) \varphi \left( x \right) = \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over \mu } \left( x \right)\varphi \left( {\Lambda x} \right) which characterizes the limit distribution π f for some special f ∈ 𝒭c.
关于一些随机值函数和迭代函数方程迭代次数弱极限的注记
摘要本文由两部分组成。首先,假设(Ω,A,P)是概率空间,并且(X,ϱ)是具有σ-代数的完全且可分离的度量空间𝒝 在它的所有Borel子集中,我们考虑集合𝒭c𝒝 ⊗ 𝒜-平均函数f:X×Ω中的可测收缩性→ 对于X∈X,具有有限积分(f(X,ω),X)P(dω)的X,f∈X迭代序列的弱极限πf𝒭c、 并研究函数f的连续性性质↦ πf,f∈𝒭c、 和Lipschitz解φ,其取值于方程φ(x)=ŞΩφ(f(x,ω))P(dω)+f(x)的可分离Banach空间。\varphi\left(x\right)=\int_\Omega。接下来,假设X是实可分离希尔伯特空间,∧:X→ X与||∧|<1是线性和连续的,µ是X上的一个概率Borel测度,具有有限的一阶矩,我们检验零解处的连续φ:X→ 𝔺 方程φ(x)=μ(x)φ(∧x)\varphi\left(x\right)=\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\from$}}\over\mu}\left(x\right\varphi\left({\Lambda x}\right)刻画了一些特殊f∈𝒭c
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Mathematicae Silesianae
Annales Mathematicae Silesianae Mathematics-Mathematics (all)
CiteScore
0.60
自引率
25.00%
发文量
17
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信