Symmetries of the one-dimensional hyperbolic Lagrangian mean curvature flow

IF 1.9 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Pramana Pub Date : 2023-07-05 DOI:10.1007/s12043-023-02578-1
Ben Gao, Liu Yang
{"title":"Symmetries of the one-dimensional hyperbolic Lagrangian mean curvature flow","authors":"Ben Gao,&nbsp;Liu Yang","doi":"10.1007/s12043-023-02578-1","DOIUrl":null,"url":null,"abstract":"<div><p>The one-dimensional hyperbolic mean curvature flow for Lagrangian graphs is discussed in this paper. In the beginning, infinitesimal generators, symmetry groups and an optimal system of symmetries for the proposed hyperbolic Lagrangian mean curvature flow are obtained based on the Lie symmetry approach. Additionally, several invariant solutions are discovered using reduced equations. More specifically, we use the power series method to attain explicit solutions.</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"97 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-023-02578-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The one-dimensional hyperbolic mean curvature flow for Lagrangian graphs is discussed in this paper. In the beginning, infinitesimal generators, symmetry groups and an optimal system of symmetries for the proposed hyperbolic Lagrangian mean curvature flow are obtained based on the Lie symmetry approach. Additionally, several invariant solutions are discovered using reduced equations. More specifically, we use the power series method to attain explicit solutions.

一维双曲拉格朗日平均曲率流的对称性
讨论了拉格朗日图的一维双曲平均曲率流。首先,利用李氏对称方法得到了双曲拉格朗日平均曲率流的无穷小生成子、对称群和最优对称系统。此外,利用简化方程发现了几个不变量解。更具体地说,我们使用幂级数方法来获得显式解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pramana
Pramana 物理-物理:综合
CiteScore
3.60
自引率
7.10%
发文量
206
审稿时长
3 months
期刊介绍: Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信