The Galois group of X^{p^2}+aX+a

Q4 Mathematics
Soufyane Mokhtari, Boualem Benseba
{"title":"The Galois group of X^{p^2}+aX+a","authors":"Soufyane Mokhtari, Boualem Benseba","doi":"10.24193/mathcluj.2023.1.12","DOIUrl":null,"url":null,"abstract":"Let p be an odd prime number, and a be an integer divisible by p exactly once. We prove that the Galois group G of the trinomial X^{p^{2}}+aX+a over the field Q of rational number is either the full symmetric group S_{p^{2}} or G lies between AGL(1,p^{2}) and AGL(2,p)$. Furthermore, we establish conditions when G is S_{p^{2}}.","PeriodicalId":39356,"journal":{"name":"Mathematica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/mathcluj.2023.1.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Let p be an odd prime number, and a be an integer divisible by p exactly once. We prove that the Galois group G of the trinomial X^{p^{2}}+aX+a over the field Q of rational number is either the full symmetric group S_{p^{2}} or G lies between AGL(1,p^{2}) and AGL(2,p)$. Furthermore, we establish conditions when G is S_{p^{2}}.
X^ (p^2) +aX+a的伽罗瓦群
设p是奇质数,a是能被p整除一次的整数。证明了有理数域Q上三项式X^{p^{2}}+aX+a的伽罗瓦群G是满对称群S_{p^{2}}或者G位于AGL(1,p^{2})和AGL(2,p)$之间。进一步,我们建立了G为S_{p^{2}}的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematica
Mathematica Mathematics-Mathematics (all)
CiteScore
0.30
自引率
0.00%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信