M. Samarghandi, A. Poormohammadi, S. Shanesaz, K. Godini
{"title":"Comparison Between the Performance of Activated Carbon and Graphene in Removal of Reactive Red 198","authors":"M. Samarghandi, A. Poormohammadi, S. Shanesaz, K. Godini","doi":"10.5812/AJEHE.6021","DOIUrl":null,"url":null,"abstract":"The current study aimed at comparing the performances of activated carbon and graphene in the removal of reactive red 198. The experiments were conducted in a batch reactor and the effects of some operational parameters including initial dye concentration, pH, contact time, and different doses of activated carbon and graphene on the removal efficiency of dye were investigated. The results showed that the adsorption efficiency was affected by initial dye concentration. In general, with increasing contact time up to 180 minutes, the removal efficiency increased significantly. The removal efficiency of reactive red 198 increased with increasing contact time, and after 60 minutes of contact time, adsorption phase reached the equilibrium. When activated carbon was used, the maximum removal efficiency happened at pH 3. At this pH value, reactive red 198 was removed completely (100%) after 120 minutes, whereas the minimum efficiency was observed at pH 10. A similar trend was also observed for graphene as an adsorbent. Moreover, the removal efficiency of the dye by both adsorbents increased with the increase of the adsorbent dosage. The experimental data showed that the adsorption of reactive red198 on both active carbon and graphene fitted well into the second-order kinetic model. Active carbon and graphene fitted well Langmuir 1 model. According to the results, graphene acts as suitable adsorbent and can be applied in treating several industrial effluents and contaminated water in greater scales. The main upside of grapheme, in comparison with activated carbon, is that it reaches the equilibrium in a shorter time. Further, grapheme adsorbed the dye nearly completely (98% to 100%).","PeriodicalId":8672,"journal":{"name":"Avicenna Journal of Environmental Health Engineering","volume":"4 1","pages":"6021-6021"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Avicenna Journal of Environmental Health Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5812/AJEHE.6021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 3
Abstract
The current study aimed at comparing the performances of activated carbon and graphene in the removal of reactive red 198. The experiments were conducted in a batch reactor and the effects of some operational parameters including initial dye concentration, pH, contact time, and different doses of activated carbon and graphene on the removal efficiency of dye were investigated. The results showed that the adsorption efficiency was affected by initial dye concentration. In general, with increasing contact time up to 180 minutes, the removal efficiency increased significantly. The removal efficiency of reactive red 198 increased with increasing contact time, and after 60 minutes of contact time, adsorption phase reached the equilibrium. When activated carbon was used, the maximum removal efficiency happened at pH 3. At this pH value, reactive red 198 was removed completely (100%) after 120 minutes, whereas the minimum efficiency was observed at pH 10. A similar trend was also observed for graphene as an adsorbent. Moreover, the removal efficiency of the dye by both adsorbents increased with the increase of the adsorbent dosage. The experimental data showed that the adsorption of reactive red198 on both active carbon and graphene fitted well into the second-order kinetic model. Active carbon and graphene fitted well Langmuir 1 model. According to the results, graphene acts as suitable adsorbent and can be applied in treating several industrial effluents and contaminated water in greater scales. The main upside of grapheme, in comparison with activated carbon, is that it reaches the equilibrium in a shorter time. Further, grapheme adsorbed the dye nearly completely (98% to 100%).