On a Vizing-type Integer Domination Conjecture

Q4 Mathematics
Randy Davila, E. Krop
{"title":"On a Vizing-type Integer Domination Conjecture","authors":"Randy Davila, E. Krop","doi":"10.20429/TAG.2020.070104","DOIUrl":null,"url":null,"abstract":"Given a simple graph $G$, a dominating set in $G$ is a set of vertices $S$ such that every vertex not in $S$ has a neighbor in $S$. Denote the domination number, which is the size of any minimum dominating set of $G$, by $\\gamma(G)$. For any integer $k\\ge 1$, a function $f : V (G) \\rightarrow \\{0, 1, . . ., k\\}$ is called a \\emph{$\\{k\\}$-dominating function} if the sum of its function values over any closed neighborhood is at least $k$. The weight of a $\\{k\\}$-dominating function is the sum of its values over all the vertices. The $\\{k\\}$-domination number of $G$, $\\gamma_{\\{k\\}}(G)$, is defined to be the minimum weight taken over all $\\{k\\}$-domination functions. Bresar, Henning, and Klavžar (On integer domination in graphs and Vizing-like problems. \\emph{Taiwanese J. Math.} {10(5)} (2006) pp. 1317--1328) asked whether there exists an integer $k\\ge 2$ so that $\\gamma_{\\{k\\}}(G\\square H)\\ge \\gamma(G)\\gamma(H)$. In this note we use the Roman $\\{2\\}$-domination number, $\\gamma_{R2}$ of Chellali, Haynes, Hedetniemi, and McRae, (Roman $\\{2\\}$-domination. \\emph{Discrete Applied Mathematics} {204} (2016) pp. 22-28.) to prove that if $G$ is a claw-free graph and $H$ is an arbitrary graph, then $\\gamma_{\\{2\\}}(G\\square H)\\ge \\gamma_{R2}(G\\square H)\\ge \\gamma(G)\\gamma(H)$, which also implies the conjecture for all $k\\ge 2$.","PeriodicalId":37096,"journal":{"name":"Theory and Applications of Graphs","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Applications of Graphs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20429/TAG.2020.070104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Given a simple graph $G$, a dominating set in $G$ is a set of vertices $S$ such that every vertex not in $S$ has a neighbor in $S$. Denote the domination number, which is the size of any minimum dominating set of $G$, by $\gamma(G)$. For any integer $k\ge 1$, a function $f : V (G) \rightarrow \{0, 1, . . ., k\}$ is called a \emph{$\{k\}$-dominating function} if the sum of its function values over any closed neighborhood is at least $k$. The weight of a $\{k\}$-dominating function is the sum of its values over all the vertices. The $\{k\}$-domination number of $G$, $\gamma_{\{k\}}(G)$, is defined to be the minimum weight taken over all $\{k\}$-domination functions. Bresar, Henning, and Klavžar (On integer domination in graphs and Vizing-like problems. \emph{Taiwanese J. Math.} {10(5)} (2006) pp. 1317--1328) asked whether there exists an integer $k\ge 2$ so that $\gamma_{\{k\}}(G\square H)\ge \gamma(G)\gamma(H)$. In this note we use the Roman $\{2\}$-domination number, $\gamma_{R2}$ of Chellali, Haynes, Hedetniemi, and McRae, (Roman $\{2\}$-domination. \emph{Discrete Applied Mathematics} {204} (2016) pp. 22-28.) to prove that if $G$ is a claw-free graph and $H$ is an arbitrary graph, then $\gamma_{\{2\}}(G\square H)\ge \gamma_{R2}(G\square H)\ge \gamma(G)\gamma(H)$, which also implies the conjecture for all $k\ge 2$.
关于Vizing型整数控制猜想
给定一个简单图$G$,$G$中的支配集是一组顶点$S$,使得不在$S$中的每个顶点在$S$内都有一个邻居。用$\gamma(G)$表示支配数,它是$G$的任何最小支配集的大小。对于任何整数$k\ge1$,如果函数$f:V(G)\rightarrow\{0,1,…,k\}$在任何闭邻域上的函数值之和至少为$k$,则称其为\emph{$\{k\}$-支配函数}。$\{k\}$支配函数的权重是它在所有顶点上的值的总和。$G$的$\{k\}$支配数,$\gamma_{\{k}}(G)$,被定义为所有$\{k\}$支配函数的最小权重。Bresar、Henning和Klavžar(关于图中的整数控制和类Vizing问题。\emph{Taiwan J.Math.}{10(5)}(2006)pp.1317-1328)询问是否存在整数$k\ge2$,使得$\gamma_{\{k\}}(G\square H)\ge\gamma(G)\gamma。在本文中,我们使用Chellali、Haynes、Hedetniemi和McRae的罗马$\{2\}$支配数$\gamma_{R2}$(Roman$\{2\}$支配。\emph{Discrete Applied Mathematics}{204}(2016)pp.22-28)来证明,如果$G$是无爪图,$H$是任意图,那么$\gamma _{2\}},这也暗示了对所有$k\ge2$的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theory and Applications of Graphs
Theory and Applications of Graphs Mathematics-Discrete Mathematics and Combinatorics
CiteScore
0.70
自引率
0.00%
发文量
17
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信