An Operational Approach to the Generalized Rencontres Polynomials

IF 1 Q1 MATHEMATICS
E. Munarini
{"title":"An Operational Approach to the Generalized Rencontres Polynomials","authors":"E. Munarini","doi":"10.46793/kgjmat2203.461m","DOIUrl":null,"url":null,"abstract":"In this paper, we study the umbral operators J, M and N associated with the generalized rencontres polynomials D(m) n (x). We obtain their representations in terms of the differential operator Dx and the shift operator E. Then, by using these representations, we obtain some combinatorial and differential identities for the generalized rencontres polynomials. Finally, we extend these results to some related polynomials and, in particular, to the generalized permutation polynomials P(m)n (x) and the generalized arrangement polynomials A(m)n (x).","PeriodicalId":44902,"journal":{"name":"Kragujevac Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kragujevac Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/kgjmat2203.461m","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we study the umbral operators J, M and N associated with the generalized rencontres polynomials D(m) n (x). We obtain their representations in terms of the differential operator Dx and the shift operator E. Then, by using these representations, we obtain some combinatorial and differential identities for the generalized rencontres polynomials. Finally, we extend these results to some related polynomials and, in particular, to the generalized permutation polynomials P(m)n (x) and the generalized arrangement polynomials A(m)n (x).
广义Rencontres多项式的一种运算方法
本文研究了与广义规划多项式D(M)N(x)相关的本影算子J、M和N。我们得到了它们在微分算子Dx和移位算子E方面的表示。然后,通过使用这些表示,我们得到了广义rencontres多项式的一些组合恒等式和微分恒等式。最后,我们将这些结果推广到一些相关的多项式,特别是推广到广义排列多项式P(m)n(x)和广义排列多项式A(m)n(x)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信