Photochemical Water Oxidation Using {PMo12O40@Mo72Fe30}n Based Soft Oxometalate

IF 2.4 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Santu Das, Soumyajit Roy
{"title":"Photochemical Water Oxidation Using {PMo12O40@Mo72Fe30}n Based Soft Oxometalate","authors":"Santu Das, Soumyajit Roy","doi":"10.1142/S2251237317500010","DOIUrl":null,"url":null,"abstract":"Finding an alternative energy resource which can produce clean energy at a low cost is one of the major concerns of our times. The conversion of light energy into chemical energy is one key step forward in the direction. With that end in view photochemical water oxidation to produce oxygen plays a crucial role. In the present paper we have synthesized a soft oxometalate {PMo12O40@Mo72Fe30}n(1) from its well-known precursor polyoxometalate constituent [Muller et al., Chem. Commun. 1, 657 (2001)]. It is known that in the matter of catalysis, high surface area, possibility of heterogenization, recoverability makes soft oxometalates (SOMs) attractive as catalytic materials. Here we exploit such advantages of SOMs. The SOM based material acts as an active catalyst for photochemical water oxidation reaction with a maximum turnover number of 20256 and turnover frequency of 24.11min−1. The catalyst material is stable under photochemical reaction conditions and therefore can be reused for multiple photo catalytic water oxidation reaction cycles.","PeriodicalId":16406,"journal":{"name":"Journal of Molecular and Engineering Materials","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2017-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251237317500010","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular and Engineering Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2251237317500010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

Abstract

Finding an alternative energy resource which can produce clean energy at a low cost is one of the major concerns of our times. The conversion of light energy into chemical energy is one key step forward in the direction. With that end in view photochemical water oxidation to produce oxygen plays a crucial role. In the present paper we have synthesized a soft oxometalate {PMo12O40@Mo72Fe30}n(1) from its well-known precursor polyoxometalate constituent [Muller et al., Chem. Commun. 1, 657 (2001)]. It is known that in the matter of catalysis, high surface area, possibility of heterogenization, recoverability makes soft oxometalates (SOMs) attractive as catalytic materials. Here we exploit such advantages of SOMs. The SOM based material acts as an active catalyst for photochemical water oxidation reaction with a maximum turnover number of 20256 and turnover frequency of 24.11min−1. The catalyst material is stable under photochemical reaction conditions and therefore can be reused for multiple photo catalytic water oxidation reaction cycles.
基于{PMo12O40@Mo72Fe30}n的软金属氧酸盐光化学水氧化
寻找一种能够以低成本生产清洁能源的替代能源是我们时代的主要关切之一。将光能转化为化学能是朝着这个方向迈出的关键一步。有鉴于此,光化学水氧化产生氧气起着至关重要的作用。在本文中,我们合成了一种软的含氧金属盐{PMo12O40@Mo72Fe30}n(1) 由其众所周知的前体多金属氧酸盐组分[Muller等人,Chem.Commun.1657(2001)]制备。众所周知,在催化方面,高表面积、多相化的可能性、可回收性使软金属氧化合物(SOMs)作为催化材料具有吸引力。在这里,我们利用SOM的这些优势。SOM基材料作为光化学水氧化反应的活性催化剂,最大周转数为20256,周转频率为24.11min−1。催化剂材料在光化学反应条件下是稳定的,因此可以重复用于多个光催化水氧化反应循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular and Engineering Materials
Journal of Molecular and Engineering Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
自引率
0.00%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信