Design, development, and analysis of a box type solar cooker with optimally reflecting side walls

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
H. Vaidya, M. Rathod, S. Channiwala
{"title":"Design, development, and analysis of a box type solar cooker with optimally reflecting side walls","authors":"H. Vaidya, M. Rathod, S. Channiwala","doi":"10.18186/thermal.1297564","DOIUrl":null,"url":null,"abstract":"A novel inclined sidewall box-type solar cooker is constructed, and its performance is evalu-ated. The Opto-geometrical design of the cooker was designed for Surat, a city in India. The design is modified by optimizing the inclination angles of the sidewalls so that an optimal thermal response may be generated by reflecting sun rays from the sidewalls, and the perfor-mance of the solar cooker is enhanced. The optimized sidewall angles due south, due north, due east, and due west are designed to be 67.30, 22.690, 35.440, and 35.440, respectively and side walls are made reflective with reflecting Aluminium sheets. The results are compared with a conventional cooker. The thermal performance of the newly built solar cooker was evaluated, and the merit F1 for no-load circumstances and the merit F2 for various loading conditions were determined. The results show that the maximum plate temperature, the figure of merit F1, and the maximum pot temperature of the newly developed solar cooker with optimally reflecting sidewalls during load test are higher than that of a conventional cooker. The max-imum plate temperature is found to be 760C and 650C in newly designed and conventional solar cookers, respectively. The temperatures are found to be about 16% more from 11:30 pm to 2:00 pm in the newly designed cooker compared to the conventional cooker. The maximum value of Figure of merit F1 is found to be 0.15 and 0.11 in newly designed and conventional solar cookers. The maximum value of Figure of merit F2 is found to be 0.59 and 0.30 in newly designed and conventional solar cookers. The maximum value of pot temperature is found to be 860C and 600C for newly designed and conventional solar cookers, respectively, during the load test, which is about 43% more in the newly designed cooker than the conventional cooker. The highest cooking temperature in the newly designed cooker was maintained at 90 0C for about 2 hours, and that in the conventional cooker was maintained at 60 0C for about 2 hours. In addition, the cooking test demonstrates that the food is thoroughly cooked in the newly built solar cooker, while it was discovered undercooked in the conventional cookerC thickness, respectively without heat recovery. The operating conditions and optimized geo-metric factors, based on result analysis and comparison, are discussed in detail.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1297564","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A novel inclined sidewall box-type solar cooker is constructed, and its performance is evalu-ated. The Opto-geometrical design of the cooker was designed for Surat, a city in India. The design is modified by optimizing the inclination angles of the sidewalls so that an optimal thermal response may be generated by reflecting sun rays from the sidewalls, and the perfor-mance of the solar cooker is enhanced. The optimized sidewall angles due south, due north, due east, and due west are designed to be 67.30, 22.690, 35.440, and 35.440, respectively and side walls are made reflective with reflecting Aluminium sheets. The results are compared with a conventional cooker. The thermal performance of the newly built solar cooker was evaluated, and the merit F1 for no-load circumstances and the merit F2 for various loading conditions were determined. The results show that the maximum plate temperature, the figure of merit F1, and the maximum pot temperature of the newly developed solar cooker with optimally reflecting sidewalls during load test are higher than that of a conventional cooker. The max-imum plate temperature is found to be 760C and 650C in newly designed and conventional solar cookers, respectively. The temperatures are found to be about 16% more from 11:30 pm to 2:00 pm in the newly designed cooker compared to the conventional cooker. The maximum value of Figure of merit F1 is found to be 0.15 and 0.11 in newly designed and conventional solar cookers. The maximum value of Figure of merit F2 is found to be 0.59 and 0.30 in newly designed and conventional solar cookers. The maximum value of pot temperature is found to be 860C and 600C for newly designed and conventional solar cookers, respectively, during the load test, which is about 43% more in the newly designed cooker than the conventional cooker. The highest cooking temperature in the newly designed cooker was maintained at 90 0C for about 2 hours, and that in the conventional cooker was maintained at 60 0C for about 2 hours. In addition, the cooking test demonstrates that the food is thoroughly cooked in the newly built solar cooker, while it was discovered undercooked in the conventional cookerC thickness, respectively without heat recovery. The operating conditions and optimized geo-metric factors, based on result analysis and comparison, are discussed in detail.
具有最佳反射侧壁的箱式太阳能炊具的设计、开发和分析
构造了一种新型斜侧壁箱式太阳灶,并对其性能进行了评价。这个炊具的光学几何设计是为印度的苏拉特市设计的。该设计通过优化侧壁的倾角进行了修改,以便通过反射来自侧壁的太阳光线来产生最佳的热响应,从而增强了太阳能炊具的性能。优化后的侧壁正南、正北、正东、正西角分别为67.30、22.690、35.440、35.440,侧壁采用反光铝板。结果与传统炊具进行了比较。对新建太阳能炊具的热性能进行了评价,确定了空载工况下的优点F1和各种负荷工况下的优点F2。结果表明,新研制的最优反射侧壁太阳能炊具在负荷试验中的最高板温、优值系数F1和最高锅温均高于传统炊具。新设计和传统太阳能炊具的最高板温分别为760C和650C。新设计的炊具从晚上11点半到下午2点的温度比传统炊具高16%左右。在新设计的和传统的太阳能炊具中,优点图F1的最大值分别为0.15和0.11。在新设计的和传统的太阳能炊具中,优点系数F2的最大值分别为0.59和0.30。在负荷试验中,新设计和传统太阳能炊具的锅温最大值分别为860C和600C,比传统炊具高约43%。新设计的炊具最高烹饪温度保持在90℃约2小时,传统炊具最高烹饪温度保持在60℃约2小时。此外,烹饪试验表明,在新建的太阳能炊具中,食物完全煮熟,而在常规炊具c厚度下,发现食物未煮熟,分别没有热回收。在结果分析和比较的基础上,详细讨论了运行条件和优化的几何因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信