Mass transfer effect on viscous dissipative MHD flow of nanofluid over a stretching sheet embedded in a porous medium

IF 1.2 Q3 ENGINEERING, MARINE
B. C. Parida, B. Swain, N. Senapati
{"title":"Mass transfer effect on viscous dissipative MHD flow of nanofluid over a stretching sheet embedded in a porous medium","authors":"B. C. Parida, B. Swain, N. Senapati","doi":"10.3329/jname.v18i1.53380","DOIUrl":null,"url":null,"abstract":"Present analysis elucidates the steady free convective flow of nanofluid over a stretching sheet embedded in a porous medium. Mass transfer analysis with chemical reaction acts a great role in this study. The consideration of viscous dissipation makes the heat transfer analysis more interesting. The governing equations are remodelled as a system of ordinary differential equation adopting similarity transformation and treated numerically by 4th order Runge-Kutta method along with Shooting technique. The present results are compared with the earlier results which gives a good agreement. Some important findings are; porosity acts as aiding force whereas magnetic parameter as resistive force for fluid velocity, larger values of chemical reaction parameter result lower velocity and concentration. The study is relevant in polymer processing, food processing industries and chemical industries.","PeriodicalId":55961,"journal":{"name":"Journal of Naval Architecture and Marine Engineering","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Naval Architecture and Marine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jname.v18i1.53380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 3

Abstract

Present analysis elucidates the steady free convective flow of nanofluid over a stretching sheet embedded in a porous medium. Mass transfer analysis with chemical reaction acts a great role in this study. The consideration of viscous dissipation makes the heat transfer analysis more interesting. The governing equations are remodelled as a system of ordinary differential equation adopting similarity transformation and treated numerically by 4th order Runge-Kutta method along with Shooting technique. The present results are compared with the earlier results which gives a good agreement. Some important findings are; porosity acts as aiding force whereas magnetic parameter as resistive force for fluid velocity, larger values of chemical reaction parameter result lower velocity and concentration. The study is relevant in polymer processing, food processing industries and chemical industries.
多孔介质中拉伸片上纳米流体粘性耗散MHD流动的传质效应
目前的分析阐明了纳米流体在嵌入多孔介质中的拉伸片上的稳定自由对流。化学反应传质分析在本研究中起着重要作用。粘性耗散的考虑使传热分析更加有趣。采用相似变换将控制方程组重构为常微分方程组,并采用四阶龙格-库塔法和Shooting技术对其进行数值处理。将目前的结果与早期的结果进行了比较,得出了很好的一致性。一些重要的发现是:;孔隙率是流体速度的辅助力,而磁性参数是流体流速的阻力,化学反应参数的值越大,速度和浓度越低。该研究涉及聚合物加工、食品加工和化学工业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
5.60%
发文量
0
审稿时长
20 weeks
期刊介绍: TJPRC: Journal of Naval Architecture and Marine Engineering (JNAME) is a peer reviewed journal and it provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; under-water acoustics; satellite observations; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; aqua-cultural engineering; sub-sea engineering; and specialized water-craft engineering. International Journal of Naval Architecture and Ocean Engineering is published quarterly by the Society of Naval Architects of Korea. In addition to original, full-length, refereed papers, review articles by leading authorities and articulated technical discussions of highly technical interest are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信