Taking a critical look at the critical turn in data science: From “data feminism” to transnational feminist data science

IF 6.5 1区 社会学 Q1 SOCIAL SCIENCES, INTERDISCIPLINARY
Z. Tacheva
{"title":"Taking a critical look at the critical turn in data science: From “data feminism” to transnational feminist data science","authors":"Z. Tacheva","doi":"10.1177/20539517221112901","DOIUrl":null,"url":null,"abstract":"Through a critical analysis of recent developments in the theory and practice of data science, including nascent feminist approaches to data collection and analysis, this commentary aims to signal the need for a transnational feminist orientation towards data science. I argue that while much needed in the context of persistent algorithmic oppression, a Western feminist lens limits the scope of problems, and thus—solutions, critical data scholars, and scientists can consider. A resolutely transnational feminist approach on the other hand, can provide data theorists and practitioners with the hermeneutic tools necessary to identify and disrupt instances of injustice in a more inclusive and comprehensive manner. A transnational feminist orientation to data science can pay particular attention to the communities rendered most vulnerable by algorithmic oppression, such as women of color and populations in non-Western countries. I present five ways in which transnational feminism can be leveraged as an intervention into the current data science canon.","PeriodicalId":47834,"journal":{"name":"Big Data & Society","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data & Society","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/20539517221112901","RegionNum":1,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

Through a critical analysis of recent developments in the theory and practice of data science, including nascent feminist approaches to data collection and analysis, this commentary aims to signal the need for a transnational feminist orientation towards data science. I argue that while much needed in the context of persistent algorithmic oppression, a Western feminist lens limits the scope of problems, and thus—solutions, critical data scholars, and scientists can consider. A resolutely transnational feminist approach on the other hand, can provide data theorists and practitioners with the hermeneutic tools necessary to identify and disrupt instances of injustice in a more inclusive and comprehensive manner. A transnational feminist orientation to data science can pay particular attention to the communities rendered most vulnerable by algorithmic oppression, such as women of color and populations in non-Western countries. I present five ways in which transnational feminism can be leveraged as an intervention into the current data science canon.
批判性地看待数据科学的批判性转向:从“数据女权主义”到跨国女权主义数据科学
通过对数据科学理论和实践的最新发展进行批判性分析,包括对数据收集和分析的新兴女权主义方法,本评论旨在表明数据科学需要跨国女权主义取向。我认为,尽管在持续的算法压迫的背景下非常需要,但西方女权主义的视角限制了问题的范围,因此——解决方案、关键数据学者和科学家可以考虑。另一方面,坚定的跨国女权主义方法可以为数据理论家和从业者提供必要的解释学工具,以更具包容性和全面的方式识别和破坏不公正现象。数据科学的跨国女权主义取向可以特别关注因算法压迫而变得最脆弱的社区,例如非西方国家的有色人种女性和人口。我提出了五种方法,可以利用跨国女权主义作为对当前数据科学经典的干预。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Big Data & Society
Big Data & Society SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
10.90
自引率
10.60%
发文量
59
审稿时长
11 weeks
期刊介绍: Big Data & Society (BD&S) is an open access, peer-reviewed scholarly journal that publishes interdisciplinary work principally in the social sciences, humanities, and computing and their intersections with the arts and natural sciences. The journal focuses on the implications of Big Data for societies and aims to connect debates about Big Data practices and their effects on various sectors such as academia, social life, industry, business, and government. BD&S considers Big Data as an emerging field of practices, not solely defined by but generative of unique data qualities such as high volume, granularity, data linking, and mining. The journal pays attention to digital content generated both online and offline, encompassing social media, search engines, closed networks (e.g., commercial or government transactions), and open networks like digital archives, open government, and crowdsourced data. Rather than providing a fixed definition of Big Data, BD&S encourages interdisciplinary inquiries, debates, and studies on various topics and themes related to Big Data practices. BD&S seeks contributions that analyze Big Data practices, involve empirical engagements and experiments with innovative methods, and reflect on the consequences of these practices for the representation, realization, and governance of societies. As a digital-only journal, BD&S's platform can accommodate multimedia formats such as complex images, dynamic visualizations, videos, and audio content. The contents of the journal encompass peer-reviewed research articles, colloquia, bookcasts, think pieces, state-of-the-art methods, and work by early career researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信