Three-dimensional Computational Modeling and Simulation of Intergranular Corrosion Propagation of Stainless Steel

IF 0.8 Q4 ELECTROCHEMISTRY
T. Igarashi, A. Komatsu, T. Motooka, F. Ueno, M. Yamamoto
{"title":"Three-dimensional Computational Modeling and Simulation of Intergranular Corrosion Propagation of Stainless Steel","authors":"T. Igarashi, A. Komatsu, T. Motooka, F. Ueno, M. Yamamoto","doi":"10.14773/CST.2021.20.3.105","DOIUrl":null,"url":null,"abstract":"In oxidizing nitric acid solutions, stainless steel undergoes intergranular corrosion accompanied by grain dropping and changes in the corrosion rate. For the safe operation of reprocessing plants, this mechanism should be understood. In this study, we constructed a three-dimensional computational model using a cellular automata method to simulate the intergranular corrosion propagation of stainless steel. The computational model was constructed of three types of cells: grain (bulk), grain boundary (GB), and solution cells. Model simulations verified the relationship between surface roughness during corrosion and dispersion of the dissolution rate of the GB. The relationship was investigated by simulation applying a constant dissolution rate and a distributed dissolution rate of the GB cells. The distribution of the dissolution rate of the GB cells was derived from the intergranular corrosion depth obtained by corrosion tests. The constant dissolution rate of the GB was derived from the average dissolution rate. Surface roughness calculated by the distributed dissolution rates of the GBs of the model was greater than the constant dissolution rates of the GBs. The cross-sectional images obtained were comparable to the corrosion test results. These results indicate that the surface roughness during corrosion is associated with the distribution of the corrosion rate.","PeriodicalId":43201,"journal":{"name":"Corrosion Science and Technology-Korea","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Science and Technology-Korea","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14773/CST.2021.20.3.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 2

Abstract

In oxidizing nitric acid solutions, stainless steel undergoes intergranular corrosion accompanied by grain dropping and changes in the corrosion rate. For the safe operation of reprocessing plants, this mechanism should be understood. In this study, we constructed a three-dimensional computational model using a cellular automata method to simulate the intergranular corrosion propagation of stainless steel. The computational model was constructed of three types of cells: grain (bulk), grain boundary (GB), and solution cells. Model simulations verified the relationship between surface roughness during corrosion and dispersion of the dissolution rate of the GB. The relationship was investigated by simulation applying a constant dissolution rate and a distributed dissolution rate of the GB cells. The distribution of the dissolution rate of the GB cells was derived from the intergranular corrosion depth obtained by corrosion tests. The constant dissolution rate of the GB was derived from the average dissolution rate. Surface roughness calculated by the distributed dissolution rates of the GBs of the model was greater than the constant dissolution rates of the GBs. The cross-sectional images obtained were comparable to the corrosion test results. These results indicate that the surface roughness during corrosion is associated with the distribution of the corrosion rate.
不锈钢晶间腐蚀扩展的三维计算建模与仿真
在氧化性硝酸溶液中,不锈钢发生晶间腐蚀,伴随着晶粒脱落和腐蚀速率的变化。为了后处理厂的安全运行,应该了解这一机制。本研究采用元胞自动机方法建立三维计算模型,模拟不锈钢的晶间腐蚀扩展。计算模型由三种类型的细胞组成:晶粒(bulk)、晶界(GB)和溶液细胞。模型模拟验证了腐蚀过程中表面粗糙度与GB溶解速率分散之间的关系。采用恒溶出速率和分布溶出速率模拟研究了二者之间的关系。根据腐蚀试验得到的晶间腐蚀深度,得出了GB电池的溶解速率分布。GB的恒定溶出速率由平均溶出速率导出。模型中由分布溶解速率计算的表面粗糙度大于固定溶解速率计算的表面粗糙度。获得的截面图像与腐蚀试验结果相当。结果表明,腐蚀过程中的表面粗糙度与腐蚀速率的分布有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
66.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信