Exact Green's formula for the fractional Laplacian and perturbations

IF 0.3 4区 数学 Q4 MATHEMATICS
G. Grubb
{"title":"Exact Green's formula for the fractional Laplacian and perturbations","authors":"G. Grubb","doi":"10.7146/MATH.SCAND.A-120889","DOIUrl":null,"url":null,"abstract":"Let Ω be an open, smooth, bounded subset of $ \\mathbb{R}^n $. In connection with the fractional Laplacian $(-\\Delta )^a$ ($a>0$), and more generally for a $2a$-order classical pseudodifferential operator (ψdo) $P$ with even symbol, one can define the Dirichlet value $\\gamma _0^{a-1}u$, resp. Neumann value $\\gamma _1^{a-1}u$ of $u(x)$, as the trace, resp. normal derivative, of $u/d^{a-1}$ on $\\partial \\Omega $, where $d(x)$ is the distance from $x\\in \\Omega $ to $\\partial \\Omega $; they define well-posed boundary value problems for $P$. \nA Green's formula was shown in a preceding paper, containing a generally nonlocal term $(B\\gamma _0^{a-1}u,\\gamma _0^{a-1}v)_{\\partial \\Omega }$, where $B$ is a first-order ψdo on $\\partial \\Omega $. Presently, we determine $B$ from $L$ in the case $P=L^a$, where $L$ is a strongly elliptic second-order differential operator. A particular result is that $B=0$ when $L=-\\Delta $, and that $B$ is multiplication by a function (is local) when $L$ equals $-\\Delta $ plus a first-order term. In cases of more general $L$, $B$ can be nonlocal.","PeriodicalId":49873,"journal":{"name":"Mathematica Scandinavica","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Scandinavica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/MATH.SCAND.A-120889","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Let Ω be an open, smooth, bounded subset of $ \mathbb{R}^n $. In connection with the fractional Laplacian $(-\Delta )^a$ ($a>0$), and more generally for a $2a$-order classical pseudodifferential operator (ψdo) $P$ with even symbol, one can define the Dirichlet value $\gamma _0^{a-1}u$, resp. Neumann value $\gamma _1^{a-1}u$ of $u(x)$, as the trace, resp. normal derivative, of $u/d^{a-1}$ on $\partial \Omega $, where $d(x)$ is the distance from $x\in \Omega $ to $\partial \Omega $; they define well-posed boundary value problems for $P$. A Green's formula was shown in a preceding paper, containing a generally nonlocal term $(B\gamma _0^{a-1}u,\gamma _0^{a-1}v)_{\partial \Omega }$, where $B$ is a first-order ψdo on $\partial \Omega $. Presently, we determine $B$ from $L$ in the case $P=L^a$, where $L$ is a strongly elliptic second-order differential operator. A particular result is that $B=0$ when $L=-\Delta $, and that $B$ is multiplication by a function (is local) when $L$ equals $-\Delta $ plus a first-order term. In cases of more general $L$, $B$ can be nonlocal.
精确的分数阶拉普拉斯和微扰的格林公式
设Ω是$ \mathbb{R}^n $的一个开放、光滑、有界的子集。对于分数阶拉普拉斯算子$(-\Delta )^a$ ($a>0$),更一般地说,对于带偶数符号的$2a$阶经典伪微分算子(ψdo) $P$,可以定义Dirichlet值$\gamma _0^{a-1}u$,参见。诺伊曼值$\gamma _1^{a-1}u$的$u(x)$,作为trace, resp。$u/d^{a-1}$对$\partial \Omega $的法向导数,其中$d(x)$为$x\in \Omega $到$\partial \Omega $的距离;他们定义了$P$的适定边值问题。格林公式已在前面的文章中给出,它包含一个一般非定域项$(B\gamma _0^{a-1}u,\gamma _0^{a-1}v)_{\partial \Omega }$,其中$B$是$\partial \Omega $上的一阶ψdo。目前,我们在$P=L^a$的情况下从$L$确定$B$,其中$L$是一个强椭圆二阶微分算子。一个特殊的结果是$L=-\Delta $时的$B=0$,当$L$等于$-\Delta $加上一阶项时,$B$是乘以一个函数(是局部的)。对于更一般的$L$, $B$可以是非本地的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematica Scandinavica
Mathematica Scandinavica 数学-数学
CiteScore
0.60
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: Mathematica Scandinavica is a peer-reviewed journal in mathematics that has been published regularly since 1953. Mathematica Scandinavica is run on a non-profit basis by the five mathematical societies in Scandinavia. It is the aim of the journal to publish high quality mathematical articles of moderate length. Mathematica Scandinavica publishes about 640 pages per year. For 2020, these will be published as one volume consisting of 3 issues (of 160, 240 and 240 pages, respectively), enabling a slight increase in article pages compared to previous years. The journal aims to publish the first issue by the end of March. Subsequent issues will follow at intervals of approximately 4 months. All back volumes are available in paper and online from 1953. There is free access to online articles more than five years old.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信