Clifford systems, harmonic maps and metrics with nonnegative curvature

IF 0.7 3区 数学 Q2 MATHEMATICS
Chao Qian, Zizhou Tang, Wenjiao Yan
{"title":"Clifford systems, harmonic maps and metrics with nonnegative curvature","authors":"Chao Qian, Zizhou Tang, Wenjiao Yan","doi":"10.2140/pjm.2022.320.391","DOIUrl":null,"url":null,"abstract":"Associated with a symmetric Clifford system $\\{P_0, P_1,\\cdots, P_{m}\\}$ on $\\mathbb{R}^{2l}$, there is a canonical vector bundle $\\eta$ over $S^{l-1}$. For $m=4$ and $8$, we construct explicitly its characteristic map, and determine completely when the sphere bundle $S(\\eta)$ associated to $\\eta$ admits a cross-section. These generalize the results in \\cite{St51} and \\cite{Ja58}. As an application, we establish new harmonic representatives of certain elements in homotopy groups of spheres (cf. \\cite{PT97} \\cite{PT98}). By a suitable choice of Clifford system, we construct a metric of non-negative curvature on $S(\\eta)$ which is diffeomorphic to the inhomogeneous focal submanifold $M_+$ of OT-FKM type isoparametric hypersurfaces with $m=3$.","PeriodicalId":54651,"journal":{"name":"Pacific Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2022.320.391","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Associated with a symmetric Clifford system $\{P_0, P_1,\cdots, P_{m}\}$ on $\mathbb{R}^{2l}$, there is a canonical vector bundle $\eta$ over $S^{l-1}$. For $m=4$ and $8$, we construct explicitly its characteristic map, and determine completely when the sphere bundle $S(\eta)$ associated to $\eta$ admits a cross-section. These generalize the results in \cite{St51} and \cite{Ja58}. As an application, we establish new harmonic representatives of certain elements in homotopy groups of spheres (cf. \cite{PT97} \cite{PT98}). By a suitable choice of Clifford system, we construct a metric of non-negative curvature on $S(\eta)$ which is diffeomorphic to the inhomogeneous focal submanifold $M_+$ of OT-FKM type isoparametric hypersurfaces with $m=3$.
Clifford系统,调和映射和非负曲率度量
与$\mathbb{R}^{2l}$上的对称Clifford系统$\{P_0,P_1,\cdots,P_{m}\}$有关,在$S^{l-1}$之上存在正则向量丛$\eta$。对于$m=4$和$8$,我们显式地构造其特征映射,并完全确定与$\eta$相关的球丛$S(\eta)$何时允许横截面。这些结果推广了\cite{St51}和\cite{Ja58}中的结果。作为一个应用,我们在球面的同伦群中建立了某些元素的新的调和表示(参见cite{PT97}\cite{PT98})。通过Clifford系统的适当选择,我们构造了$S(\eta)$上的非负曲率的度量,它与$M=3$的OT-FKM型等参超曲面的非齐次焦点子流形$M_+$是微分同胚的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
93
审稿时长
4-8 weeks
期刊介绍: Founded in 1951, PJM has published mathematics research for more than 60 years. PJM is run by mathematicians from the Pacific Rim. PJM aims to publish high-quality articles in all branches of mathematics, at low cost to libraries and individuals. The Pacific Journal of Mathematics is incorporated as a 501(c)(3) California nonprofit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信