{"title":"Basic asymptotic estimates for powers of Wallis’ ratios","authors":"V. Lampret","doi":"10.4067/s0719-06462021000300357","DOIUrl":null,"url":null,"abstract":"For any a ∈ R , for every n ∈ N , and for n -th Wallis’ ratio w n := (cid:81) nk =1 2 k − 1 2 k , the relative error r 0 ( a, n ) := (cid:0) v 0 ( a, n ) − w an (cid:1) /w an of the approximation w an ≈ v 0 ( a, n ) := ( πn ) − a/ 2 is estimated as (cid:12)(cid:12) r 0 ( a, n ) (cid:12)(cid:12) < 14 n . The improvement w an ≈ v ( a, n ) := ( πn ) − a/ 2 (cid:16) 1 − a 8 n + a 2 128 n 2 (cid:17) is also studied.","PeriodicalId":36416,"journal":{"name":"Cubo","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4067/s0719-06462021000300357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For any a ∈ R , for every n ∈ N , and for n -th Wallis’ ratio w n := (cid:81) nk =1 2 k − 1 2 k , the relative error r 0 ( a, n ) := (cid:0) v 0 ( a, n ) − w an (cid:1) /w an of the approximation w an ≈ v 0 ( a, n ) := ( πn ) − a/ 2 is estimated as (cid:12)(cid:12) r 0 ( a, n ) (cid:12)(cid:12) < 14 n . The improvement w an ≈ v ( a, n ) := ( πn ) − a/ 2 (cid:16) 1 − a 8 n + a 2 128 n 2 (cid:17) is also studied.