Extremal problems for the eccentricity matrices of complements of trees

IF 0.7 4区 数学 Q2 Mathematics
Iswar Mahato, M. Kannan
{"title":"Extremal problems for the eccentricity matrices of complements of trees","authors":"Iswar Mahato, M. Kannan","doi":"10.13001/ela.2023.7781","DOIUrl":null,"url":null,"abstract":"The eccentricity matrix of a connected graph $G$, denoted by $\\mathcal{E}(G)$, is obtained from the distance matrix of $G$ by keeping the largest nonzero entries in each row and each column and leaving zeros in the remaining ones. The $\\mathcal{E}$-eigenvalues of $G$ are the eigenvalues of $\\mathcal{E}(G)$. The largest modulus of an eigenvalue is the $\\mathcal{E}$-spectral radius of $G$. The $\\mathcal{E}$-energy of $G$ is the sum of the absolute values of all $\\mathcal{E}$-eigenvalues of $G$. In this article, we study some of the extremal problems for eccentricity matrices of complements of trees and characterize the extremal graphs. First, we determine the unique tree whose complement has minimum (respectively, maximum) $\\mathcal{E}$-spectral radius among the complements of trees. Then, we prove that the $\\mathcal{E}$-eigenvalues of the complement of a tree are symmetric about the origin. As a consequence of these results, we characterize the trees whose complement has minimum (respectively, maximum) least $\\mathcal{E}$-eigenvalues among the complements of trees. Finally, we discuss the extremal problems for the second largest $\\mathcal{E}$-eigenvalue and the $\\mathcal{E}$-energy of complements of trees and characterize the extremal graphs. As an application, we obtain a Nordhaus-Gaddum-type lower bounds for the second largest $\\mathcal{E}$-eigenvalue and $\\mathcal{E}$-energy of a tree and its complement.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2023.7781","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The eccentricity matrix of a connected graph $G$, denoted by $\mathcal{E}(G)$, is obtained from the distance matrix of $G$ by keeping the largest nonzero entries in each row and each column and leaving zeros in the remaining ones. The $\mathcal{E}$-eigenvalues of $G$ are the eigenvalues of $\mathcal{E}(G)$. The largest modulus of an eigenvalue is the $\mathcal{E}$-spectral radius of $G$. The $\mathcal{E}$-energy of $G$ is the sum of the absolute values of all $\mathcal{E}$-eigenvalues of $G$. In this article, we study some of the extremal problems for eccentricity matrices of complements of trees and characterize the extremal graphs. First, we determine the unique tree whose complement has minimum (respectively, maximum) $\mathcal{E}$-spectral radius among the complements of trees. Then, we prove that the $\mathcal{E}$-eigenvalues of the complement of a tree are symmetric about the origin. As a consequence of these results, we characterize the trees whose complement has minimum (respectively, maximum) least $\mathcal{E}$-eigenvalues among the complements of trees. Finally, we discuss the extremal problems for the second largest $\mathcal{E}$-eigenvalue and the $\mathcal{E}$-energy of complements of trees and characterize the extremal graphs. As an application, we obtain a Nordhaus-Gaddum-type lower bounds for the second largest $\mathcal{E}$-eigenvalue and $\mathcal{E}$-energy of a tree and its complement.
树的补集的偏心矩阵的极值问题
连通图$G$的偏心率矩阵,记为$\mathcal{E}(G)$,由$G$的距离矩阵得到,每一行、每一列保留最大的非零项,其余的为零。$G$的$\mathcal{E}$-特征值是$\mathcal{E}(G)$的特征值。特征值的最大模是$G$的$\数学{E}$-谱半径。$ $G$的$ $ mathcal{E}$-能量是$ $G$的所有$ $ mathcal{E}$-特征值的绝对值之和。本文研究了树补的偏心矩阵的一些极值问题,并对极值图进行了刻画。首先,我们确定唯一的树,其补在树的补中具有最小(分别是最大)$\mathcal{E}$-谱半径。然后,我们证明了树的补的$\数学{E}$-特征值是关于原点对称的。作为这些结果的结果,我们描述了补在树的补中具有最小(分别是最大)最小$\mathcal{E}$-特征值的树。最后讨论了树补的第二大$\mathcal{E}$-特征值和$\mathcal{E}$-能量的极值问题,并对极值图进行了刻画。作为应用,我们得到了树及其补的第二大$\mathcal{E}$-特征值和$\mathcal{E}$-能量的一个nordhaus - gaddum型下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信