{"title":"and empirical measures, the irregular set and entropy","authors":"S. Usuki","doi":"10.1017/etds.2023.60","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>For integers <jats:italic>a</jats:italic> and <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723000603_inline3.png\" />\n\t\t<jats:tex-math>\n$b\\geq 2$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, let <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723000603_inline4.png\" />\n\t\t<jats:tex-math>\n$T_a$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> and <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723000603_inline5.png\" />\n\t\t<jats:tex-math>\n$T_b$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> be multiplication by <jats:italic>a</jats:italic> and <jats:italic>b</jats:italic> on <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723000603_inline6.png\" />\n\t\t<jats:tex-math>\n$\\mathbb {T}=\\mathbb {R}/\\mathbb {Z}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>. The action on <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723000603_inline7.png\" />\n\t\t<jats:tex-math>\n$\\mathbb {T}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> by <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723000603_inline8.png\" />\n\t\t<jats:tex-math>\n$T_a$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> and <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723000603_inline9.png\" />\n\t\t<jats:tex-math>\n$T_b$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> is called <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723000603_inline10.png\" />\n\t\t<jats:tex-math>\n$\\times a,\\times b$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> action and it is known that, if <jats:italic>a</jats:italic> and <jats:italic>b</jats:italic> are multiplicatively independent, then the only <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723000603_inline11.png\" />\n\t\t<jats:tex-math>\n$\\times a,\\times b$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> invariant and ergodic measure with positive entropy of <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723000603_inline12.png\" />\n\t\t<jats:tex-math>\n$T_a$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> or <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723000603_inline13.png\" />\n\t\t<jats:tex-math>\n$T_b$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> is the Lebesgue measure. However, it is not known whether there exists a non-trivial <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723000603_inline14.png\" />\n\t\t<jats:tex-math>\n$\\times a,\\times b$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> invariant and ergodic measure. In this paper, we study the empirical measures of <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723000603_inline15.png\" />\n\t\t<jats:tex-math>\n$x\\in \\mathbb {T}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> with respect to the <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723000603_inline16.png\" />\n\t\t<jats:tex-math>\n$\\times a,\\times b$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> action and show that the set of <jats:italic>x</jats:italic> such that the empirical measures of <jats:italic>x</jats:italic> do not converge to any measure has Hausdorff dimension one and the set of <jats:italic>x</jats:italic> such that the empirical measures can approach a non-trivial <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723000603_inline17.png\" />\n\t\t<jats:tex-math>\n$\\times a,\\times b$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> invariant measure has Hausdorff dimension zero. Furthermore, we obtain some equidistribution result about the <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723000603_inline18.png\" />\n\t\t<jats:tex-math>\n$\\times a,\\times b$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> orbit of <jats:italic>x</jats:italic> in the complement of a set of Hausdorff dimension zero.</jats:p>","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ergodic Theory and Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2023.60","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For integers a and
$b\geq 2$
, let
$T_a$
and
$T_b$
be multiplication by a and b on
$\mathbb {T}=\mathbb {R}/\mathbb {Z}$
. The action on
$\mathbb {T}$
by
$T_a$
and
$T_b$
is called
$\times a,\times b$
action and it is known that, if a and b are multiplicatively independent, then the only
$\times a,\times b$
invariant and ergodic measure with positive entropy of
$T_a$
or
$T_b$
is the Lebesgue measure. However, it is not known whether there exists a non-trivial
$\times a,\times b$
invariant and ergodic measure. In this paper, we study the empirical measures of
$x\in \mathbb {T}$
with respect to the
$\times a,\times b$
action and show that the set of x such that the empirical measures of x do not converge to any measure has Hausdorff dimension one and the set of x such that the empirical measures can approach a non-trivial
$\times a,\times b$
invariant measure has Hausdorff dimension zero. Furthermore, we obtain some equidistribution result about the
$\times a,\times b$
orbit of x in the complement of a set of Hausdorff dimension zero.
期刊介绍:
Ergodic Theory and Dynamical Systems focuses on a rich variety of research areas which, although diverse, employ as common themes global dynamical methods. The journal provides a focus for this important and flourishing area of mathematics and brings together many major contributions in the field. The journal acts as a forum for central problems of dynamical systems and of interactions of dynamical systems with areas such as differential geometry, number theory, operator algebras, celestial and statistical mechanics, and biology.