and empirical measures, the irregular set and entropy

IF 0.8 3区 数学 Q2 MATHEMATICS
S. Usuki
{"title":"and empirical measures, the irregular set and entropy","authors":"S. Usuki","doi":"10.1017/etds.2023.60","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>For integers <jats:italic>a</jats:italic> and <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723000603_inline3.png\" />\n\t\t<jats:tex-math>\n$b\\geq 2$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, let <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723000603_inline4.png\" />\n\t\t<jats:tex-math>\n$T_a$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> and <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723000603_inline5.png\" />\n\t\t<jats:tex-math>\n$T_b$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> be multiplication by <jats:italic>a</jats:italic> and <jats:italic>b</jats:italic> on <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723000603_inline6.png\" />\n\t\t<jats:tex-math>\n$\\mathbb {T}=\\mathbb {R}/\\mathbb {Z}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>. The action on <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723000603_inline7.png\" />\n\t\t<jats:tex-math>\n$\\mathbb {T}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> by <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723000603_inline8.png\" />\n\t\t<jats:tex-math>\n$T_a$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> and <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723000603_inline9.png\" />\n\t\t<jats:tex-math>\n$T_b$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> is called <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723000603_inline10.png\" />\n\t\t<jats:tex-math>\n$\\times a,\\times b$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> action and it is known that, if <jats:italic>a</jats:italic> and <jats:italic>b</jats:italic> are multiplicatively independent, then the only <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723000603_inline11.png\" />\n\t\t<jats:tex-math>\n$\\times a,\\times b$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> invariant and ergodic measure with positive entropy of <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723000603_inline12.png\" />\n\t\t<jats:tex-math>\n$T_a$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> or <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723000603_inline13.png\" />\n\t\t<jats:tex-math>\n$T_b$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> is the Lebesgue measure. However, it is not known whether there exists a non-trivial <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723000603_inline14.png\" />\n\t\t<jats:tex-math>\n$\\times a,\\times b$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> invariant and ergodic measure. In this paper, we study the empirical measures of <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723000603_inline15.png\" />\n\t\t<jats:tex-math>\n$x\\in \\mathbb {T}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> with respect to the <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723000603_inline16.png\" />\n\t\t<jats:tex-math>\n$\\times a,\\times b$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> action and show that the set of <jats:italic>x</jats:italic> such that the empirical measures of <jats:italic>x</jats:italic> do not converge to any measure has Hausdorff dimension one and the set of <jats:italic>x</jats:italic> such that the empirical measures can approach a non-trivial <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723000603_inline17.png\" />\n\t\t<jats:tex-math>\n$\\times a,\\times b$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> invariant measure has Hausdorff dimension zero. Furthermore, we obtain some equidistribution result about the <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723000603_inline18.png\" />\n\t\t<jats:tex-math>\n$\\times a,\\times b$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> orbit of <jats:italic>x</jats:italic> in the complement of a set of Hausdorff dimension zero.</jats:p>","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ergodic Theory and Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2023.60","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For integers a and $b\geq 2$ , let $T_a$ and $T_b$ be multiplication by a and b on $\mathbb {T}=\mathbb {R}/\mathbb {Z}$ . The action on $\mathbb {T}$ by $T_a$ and $T_b$ is called $\times a,\times b$ action and it is known that, if a and b are multiplicatively independent, then the only $\times a,\times b$ invariant and ergodic measure with positive entropy of $T_a$ or $T_b$ is the Lebesgue measure. However, it is not known whether there exists a non-trivial $\times a,\times b$ invariant and ergodic measure. In this paper, we study the empirical measures of $x\in \mathbb {T}$ with respect to the $\times a,\times b$ action and show that the set of x such that the empirical measures of x do not converge to any measure has Hausdorff dimension one and the set of x such that the empirical measures can approach a non-trivial $\times a,\times b$ invariant measure has Hausdorff dimension zero. Furthermore, we obtain some equidistribution result about the $\times a,\times b$ orbit of x in the complement of a set of Hausdorff dimension zero.
以及经验测度,不规则集和熵
对于整数a和$b\geq2$,设$T_a$和$T_b$与$\mathbb{T}=\mathbb{R}/\mathbb{Z}$上的a和b相乘。$T_a$和$T_b$对$\mathbb{T}$的作用被称为$\times a,\times b$作用,并且已知,如果a和b是乘法独立的,那么唯一具有$T_a$/T_b$正熵的$\timers a,\ttimes b$不变遍历测度是Lebesgue测度。然而,不知道是否存在非平凡的$\times a,\times b$不变量和遍历测度。在本文中,我们研究了$x\In\mathbb{T}$关于$\times a,\times b$作用的经验测度,并证明了使得x的经验测度不收敛于任何测度的x集具有Hausdorff维数1,并且x集使得经验测度可以接近非平凡的$\timers a,\次b$不变测度的Hausdorff维数为零。此外,我们还得到了关于Hausdorff维数为零的集合的补集中x的$\times a,\times b$轨道的一些等分布结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
11.10%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Ergodic Theory and Dynamical Systems focuses on a rich variety of research areas which, although diverse, employ as common themes global dynamical methods. The journal provides a focus for this important and flourishing area of mathematics and brings together many major contributions in the field. The journal acts as a forum for central problems of dynamical systems and of interactions of dynamical systems with areas such as differential geometry, number theory, operator algebras, celestial and statistical mechanics, and biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信