Structural, optical and electrical properties of CuBiS2 thin films deposited by spray pyrolysis at different deposition times

Q4 Materials Science
A. M. Mansour, I. M. Radaf
{"title":"Structural, optical and electrical properties of CuBiS2 thin films deposited by spray pyrolysis at different deposition times","authors":"A. M. Mansour, I. M. Radaf","doi":"10.1504/IJMMP.2019.10023371","DOIUrl":null,"url":null,"abstract":"Reproducible and good quality copper bismuth sulphide (CuBiS2) thin layer were situated on preheated glassy slide substrates made implementing the spraying pyrolysis approach at distinctive times of spraying 15, 30, 45, and 60 min with a fixed substrate temperature 400°C. The effect of spray time on the structural, morphology, optical and electrical benefits of the CuBiS2 thin films produced by spray pyrolysis methodology were studied. The structure was studied by XRD methodology. The surface texture of the produced films was considered by SEM. The optical benefits of the CuBiS2 films were inquired working with the spectrophotometric method in which the optical transmittance and reflectance beyond a wavelength range 200-2500 nm were measured. The d.c. conductivity was studied at different temperatures for all the prepared CuBiS2 thin films.","PeriodicalId":35049,"journal":{"name":"International Journal of Microstructure and Materials Properties","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microstructure and Materials Properties","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJMMP.2019.10023371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 15

Abstract

Reproducible and good quality copper bismuth sulphide (CuBiS2) thin layer were situated on preheated glassy slide substrates made implementing the spraying pyrolysis approach at distinctive times of spraying 15, 30, 45, and 60 min with a fixed substrate temperature 400°C. The effect of spray time on the structural, morphology, optical and electrical benefits of the CuBiS2 thin films produced by spray pyrolysis methodology were studied. The structure was studied by XRD methodology. The surface texture of the produced films was considered by SEM. The optical benefits of the CuBiS2 films were inquired working with the spectrophotometric method in which the optical transmittance and reflectance beyond a wavelength range 200-2500 nm were measured. The d.c. conductivity was studied at different temperatures for all the prepared CuBiS2 thin films.
不同沉积时间喷雾热解沉积CuBiS2薄膜的结构、光学和电学性质
可复制且质量良好的硫化铜铋(CuBiS2)薄层位于预热的玻璃载玻片衬底上,该衬底在固定衬底温度400°C下,在15、30、45和60分钟的不同时间采用喷雾热解方法制成。研究了喷雾时间对喷雾热解法制备的CuBiS2薄膜的结构、形貌、光学和电学性能的影响。用XRD方法对其结构进行了研究。用扫描电镜观察了所制备的CuBiS2薄膜的表面结构,用分光光度法测定了薄膜在200~2500nm波长范围外的透光率和反射率,探讨了薄膜的光学性能。研究了所制备的CuBiS2薄膜在不同温度下的直流电导率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Microstructure and Materials Properties
International Journal of Microstructure and Materials Properties Materials Science-Materials Science (all)
CiteScore
0.70
自引率
0.00%
发文量
27
期刊介绍: IJMMP publishes contributions on mechanical, electrical, magnetic and optical properties of metal, ceramic and polymeric materials in terms of the crystal structure and microstructure. Papers treat all aspects of materials, i.e., their selection, characterisation, transformation, modification, testing, and evaluation in the decision-making phase of product design/manufacture. Contributions in the fields of product, design and improvement of material properties in various production processes are welcome, along with scientific papers on new technologies, processes and materials, and on the modelling of processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信