The Log-Kumaraswamy Generalized Gamma Regression Model with Application to Chemical Dependency Data

Marcelino A. R. Pascoa, Claudia M. M. de Paiva, G. Cordeiro, E. Ortega
{"title":"The Log-Kumaraswamy Generalized Gamma Regression Model with Application to Chemical Dependency Data","authors":"Marcelino A. R. Pascoa, Claudia M. M. de Paiva, G. Cordeiro, E. Ortega","doi":"10.6339/JDS.2013.11(4).1131","DOIUrl":null,"url":null,"abstract":"The ve parameter Kumaraswamy generalized gamma model (Pas- coa et al., 2011) includes some important distributions as special cases and it is very useful for modeling lifetime data. We propose an extended version of this distribution by assuming that a shape parameter can take negative values. The new distribution can accommodate increasing, decreasing, bath- tub and unimodal shaped hazard functions. A second advantage is that it also includes as special models reciprocal distributions such as the recipro- cal gamma and reciprocal Weibull distributions. A third advantage is that it can represent the error distribution for the log-Kumaraswamy general- ized gamma regression model. We provide a mathematical treatment of the new distribution including explicit expressions for moments, generating function, mean deviations and order statistics. We obtain the moments of the log-transformed distribution. The new regression model can be used more eectively in the analysis of survival data since it includes as sub- models several widely-known regression models. The method of maximum likelihood and a Bayesian procedure are used for estimating the model pa- rameters for censored data. Overall, the new regression model is very useful to the analysis of real data.","PeriodicalId":73699,"journal":{"name":"Journal of data science : JDS","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data science : JDS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6339/JDS.2013.11(4).1131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The ve parameter Kumaraswamy generalized gamma model (Pas- coa et al., 2011) includes some important distributions as special cases and it is very useful for modeling lifetime data. We propose an extended version of this distribution by assuming that a shape parameter can take negative values. The new distribution can accommodate increasing, decreasing, bath- tub and unimodal shaped hazard functions. A second advantage is that it also includes as special models reciprocal distributions such as the recipro- cal gamma and reciprocal Weibull distributions. A third advantage is that it can represent the error distribution for the log-Kumaraswamy general- ized gamma regression model. We provide a mathematical treatment of the new distribution including explicit expressions for moments, generating function, mean deviations and order statistics. We obtain the moments of the log-transformed distribution. The new regression model can be used more eectively in the analysis of survival data since it includes as sub- models several widely-known regression models. The method of maximum likelihood and a Bayesian procedure are used for estimating the model pa- rameters for censored data. Overall, the new regression model is very useful to the analysis of real data.
LogKumaraswamy广义伽玛回归模型及其在化学依赖数据中的应用
ve参数Kumaraswamy广义伽玛模型(Pas-coa et al.,2011)包括一些重要的分布作为特例,它对寿命数据的建模非常有用。我们通过假设形状参数可以取负值来提出这种分布的扩展版本。新的分布可以适应增加、减少、浴缸和单峰形状的危险函数。第二个优点是,它还包括作为特殊模型的倒数分布,如回归伽马和倒数威布尔分布。第三个优点是它可以表示log Kumaraswamy广义伽玛回归模型的误差分布。我们提供了新分布的数学处理,包括矩、生成函数、平均偏差和阶统计量的显式表达式。我们得到了对数变换分布的矩。新的回归模型可以更有效地用于生存数据的分析,因为它包括几个众所周知的回归模型作为子模型。最大似然法和贝叶斯程序用于估计截尾数据的模型参数。总的来说,新的回归模型对真实数据的分析非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信