Topologically Mixing Properties of Multiplicative Integer Systems

IF 0.1 Q4 MATHEMATICS
Jung-Chao Ban, Chih-Hung Chang, Wen-Guei Hu, Guan-Yu Lai, Yu-Liang Wu
{"title":"Topologically Mixing Properties of Multiplicative Integer Systems","authors":"Jung-Chao Ban, Chih-Hung Chang, Wen-Guei Hu, Guan-Yu Lai, Yu-Liang Wu","doi":"10.14321/realanalexch.47.1.1614278701","DOIUrl":null,"url":null,"abstract":"Motivated from the study of multiple ergodic average, the investigation of multiplicative shift spaces has drawn much of interest among researchers. This paper focuses on the relation of topologically mixing properties between multiplicative shift spaces and traditional shift spaces. Suppose that $\\mathsf{X}_{\\Omega}^{(l)}$ is the multiplicative subshift derived from the shift space $\\Omega$ with given $l > 1$. We show that $\\mathsf{X}_{\\Omega}^{(l)}$ is (topologically) transitive/mixing if and only if $\\Omega$ is extensible/mixing. After introducing $l$-directional mixing property, we derive the equivalence between $l$-directional mixing property of $\\mathsf{X}_{\\Omega}^{(l)}$ and weakly mixing property of $\\Omega$.","PeriodicalId":44674,"journal":{"name":"Real Analysis Exchange","volume":"1 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2019-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real Analysis Exchange","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14321/realanalexch.47.1.1614278701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated from the study of multiple ergodic average, the investigation of multiplicative shift spaces has drawn much of interest among researchers. This paper focuses on the relation of topologically mixing properties between multiplicative shift spaces and traditional shift spaces. Suppose that $\mathsf{X}_{\Omega}^{(l)}$ is the multiplicative subshift derived from the shift space $\Omega$ with given $l > 1$. We show that $\mathsf{X}_{\Omega}^{(l)}$ is (topologically) transitive/mixing if and only if $\Omega$ is extensible/mixing. After introducing $l$-directional mixing property, we derive the equivalence between $l$-directional mixing property of $\mathsf{X}_{\Omega}^{(l)}$ and weakly mixing property of $\Omega$.
乘法整数系统的拓扑混合性质
受多重遍历平均研究的启发,乘法移位空间的研究引起了研究者的极大兴趣。本文重点研究了乘法移位空间与传统移位空间拓扑混合性质的关系。假设$\mathsf{X}_{\Omega}^{(l)}$是由移位空间$\Omega$与给定$l > 1$导出的乘法子移位。我们证明$\mathsf{X}_{\Omega}^{(l)}$是(拓扑)可传递/混合的当且仅当$\Omega$是可扩展/混合的。在引入$l$定向混合性质后,我们推导了$\mathsf{X}_{\Omega}^{(l)}$的$l$定向混合性质与$\Omega$弱混合性质之间的等价性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Real Analysis Exchange
Real Analysis Exchange MATHEMATICS-
CiteScore
0.40
自引率
50.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信