{"title":"QSPCA: A Two-Stage Efficient Power Control Approach in D2D Communication for 5G Networks","authors":"Saurabh Chandra;Prateek;Rohit Sharma;Rajeev Arya;Korhan Cengiz","doi":"10.23919/ICN.2021.0021","DOIUrl":null,"url":null,"abstract":"The existing literature on device-to-device (D2D) architecture suffers from a dearth of analysis under imperfect channel conditions. There is a need for rigorous analyses on the policy improvement and evaluation of network performance. Accordingly, a two-stage transmit power control approach (named QSPCA) is proposed: First, a reinforcement Q-learning based power control technique and; second, a supervised learning based support vector machine (SVM) model. This model replaces the unified communication model of the conventional D2D setup with a distributed one, thereby requiring lower resources, such as D2D throughput, transmit power, and signal-to-interference-plus-noise ratio as compared to existing algorithms. Results confirm that the QSPCA technique is better than existing models by at least 15.31% and 19.5% in terms of throughput as compared to SVM and Q-learning techniques, respectively. The customizability of the QSPCA technique opens up multiple avenues and industrial communication technologies in 5G networks, such as factory automation.","PeriodicalId":100681,"journal":{"name":"Intelligent and Converged Networks","volume":"2 4","pages":"295-305"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9195266/9733244/09733300.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent and Converged Networks","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9733300/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The existing literature on device-to-device (D2D) architecture suffers from a dearth of analysis under imperfect channel conditions. There is a need for rigorous analyses on the policy improvement and evaluation of network performance. Accordingly, a two-stage transmit power control approach (named QSPCA) is proposed: First, a reinforcement Q-learning based power control technique and; second, a supervised learning based support vector machine (SVM) model. This model replaces the unified communication model of the conventional D2D setup with a distributed one, thereby requiring lower resources, such as D2D throughput, transmit power, and signal-to-interference-plus-noise ratio as compared to existing algorithms. Results confirm that the QSPCA technique is better than existing models by at least 15.31% and 19.5% in terms of throughput as compared to SVM and Q-learning techniques, respectively. The customizability of the QSPCA technique opens up multiple avenues and industrial communication technologies in 5G networks, such as factory automation.