Heat and Mass Transfer of Magnetohydrodynamics (MHD) Boundary Layer Flow using Homotopy Analysis Method

IF 0.3 Q4 MATHEMATICS
Nur Liyana Nazari, A. Aziz, Vincent David, Zaileha Md Ali
{"title":"Heat and Mass Transfer of Magnetohydrodynamics (MHD) Boundary Layer Flow using Homotopy Analysis Method","authors":"Nur Liyana Nazari, A. Aziz, Vincent David, Zaileha Md Ali","doi":"10.11113/MATEMATIKA.V34.N3.1150","DOIUrl":null,"url":null,"abstract":"Heat and mass transfer of MHD boundary-layer flow of a viscous incompressible fluid over an exponentially stretching sheet in the presence of radiation is investigated. The two-dimensional boundary-layer governing partial differential equations are transformed into a system of nonlinear ordinary differential equations by using similarity variables. The transformed equations of momentum, energy and concentration are solved by Homotopy Analysis Method (HAM). The validity of HAM solution is ensured by comparing the HAM solution with existing solutions. The influence of physical parameters such as magnetic parameter, Prandtl number, radiation parameter, and Schmidt number on velocity, temperature and concentration profiles are discussed. It is found that the increasing values of magnetic parameter reduces the dimensionless velocity field but enhances the dimensionless temperature and concentration field. The temperature distribution decreases with increasing values of Prandtl number. However, the temperature distribution increases when radiation parameter increases. The concentration boundary layer thickness decreases as a result of increase in Schmidt number","PeriodicalId":43733,"journal":{"name":"Matematika","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/MATEMATIKA.V34.N3.1150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Heat and mass transfer of MHD boundary-layer flow of a viscous incompressible fluid over an exponentially stretching sheet in the presence of radiation is investigated. The two-dimensional boundary-layer governing partial differential equations are transformed into a system of nonlinear ordinary differential equations by using similarity variables. The transformed equations of momentum, energy and concentration are solved by Homotopy Analysis Method (HAM). The validity of HAM solution is ensured by comparing the HAM solution with existing solutions. The influence of physical parameters such as magnetic parameter, Prandtl number, radiation parameter, and Schmidt number on velocity, temperature and concentration profiles are discussed. It is found that the increasing values of magnetic parameter reduces the dimensionless velocity field but enhances the dimensionless temperature and concentration field. The temperature distribution decreases with increasing values of Prandtl number. However, the temperature distribution increases when radiation parameter increases. The concentration boundary layer thickness decreases as a result of increase in Schmidt number
用同伦分析方法研究磁流体力学边界层流动的传热传质
研究了在辐射作用下粘性不可压缩流体在指数拉伸薄片上的MHD边界层流动的传热传质问题。利用相似变量将二维边界层控制偏微分方程转化为非线性常微分方程组。用同伦分析法求解了变换后的动量、能量和浓度方程。通过与已有解的比较,验证了该解的有效性。讨论了磁参数、普朗特数、辐射参数和施密特数等物理参数对速度、温度和浓度分布的影响。结果表明,随着磁参量的增大,无量纲速度场减小,而温度场和浓度场增大。温度分布随普朗特数的增大而减小。而温度分布随辐射参数的增大而增大。浓度边界层厚度随着施密特数的增加而减小
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matematika
Matematika MATHEMATICS-
自引率
25.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信