The Synthesis and Crystal Structure of Six Quaternary Lithium-Alkaline Earth Metal Alumo-Silicides and Alumo-Germanides, A2LiAlTt2 (A = Mg, Ca, Sr, Ba; Tt = Si, Ge)

IF 3.1 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Paraskevi Kontomaris, Gregory M. Darone, Laura C. Paredes-Quevedo, S. Bobev
{"title":"The Synthesis and Crystal Structure of Six Quaternary Lithium-Alkaline Earth Metal Alumo-Silicides and Alumo-Germanides, A2LiAlTt2 (A = Mg, Ca, Sr, Ba; Tt = Si, Ge)","authors":"Paraskevi Kontomaris, Gregory M. Darone, Laura C. Paredes-Quevedo, S. Bobev","doi":"10.3390/inorganics11090351","DOIUrl":null,"url":null,"abstract":"Reported are the synthesis and structural characterization of a series of quaternary lithium-alkaline earth metal alumo-silicides and alumo-germanides with the base formula A2LiAlTt2 (A = Ca, Sr, Ba; Tt = Si, Ge). To synthesize each compound, a mixture of the elements with the desired stoichiometric ratio was loaded into a niobium tube, arc welded shut, enclosed in a silica tube under vacuum, and heated in a tube furnace. Each sample was analyzed by powder and single-crystal X-ray diffraction, and the crystal structure of each compound was confirmed and refined from single-crystal X-ray diffraction data. The structures, despite the identical chemical formulae, are different, largely dependent on the nature of the alkaline earth metal. The differing cation determines the structure type—the calcium compounds are part of the TiNiSi family with the Pnma space group, the strontium compounds are isostructural with Na2LiAlP2 with the Cmce space group, and the barium compounds crystallize with the PbFCl structure type in the P4/nmm space group. The anion (silicon or germanium) only impacts the size of the unit cell, with the silicides having smaller unit cell volumes than the germanides.","PeriodicalId":13572,"journal":{"name":"Inorganics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/inorganics11090351","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Reported are the synthesis and structural characterization of a series of quaternary lithium-alkaline earth metal alumo-silicides and alumo-germanides with the base formula A2LiAlTt2 (A = Ca, Sr, Ba; Tt = Si, Ge). To synthesize each compound, a mixture of the elements with the desired stoichiometric ratio was loaded into a niobium tube, arc welded shut, enclosed in a silica tube under vacuum, and heated in a tube furnace. Each sample was analyzed by powder and single-crystal X-ray diffraction, and the crystal structure of each compound was confirmed and refined from single-crystal X-ray diffraction data. The structures, despite the identical chemical formulae, are different, largely dependent on the nature of the alkaline earth metal. The differing cation determines the structure type—the calcium compounds are part of the TiNiSi family with the Pnma space group, the strontium compounds are isostructural with Na2LiAlP2 with the Cmce space group, and the barium compounds crystallize with the PbFCl structure type in the P4/nmm space group. The anion (silicon or germanium) only impacts the size of the unit cell, with the silicides having smaller unit cell volumes than the germanides.
碱土金属硅化铝和锗化铝A2LiAlTt2 (A = Mg, Ca, Sr, Ba)的合成及晶体结构Tt = Si, Ge)
报道了一系列碱式为A2LiAlTt2(a=Ca,Sr,Ba;Tt=Si,Ge)的季锂碱土金属硅化铝和锗化铝的合成和结构表征。为了合成每种化合物,将具有所需化学计量比的元素混合物装入铌管中,电弧焊接关闭,在真空下封闭在硅管中,并在管式炉中加热。通过粉末和单晶X射线衍射对每个样品进行分析,并根据单晶X射线衍射线数据确认和细化每个化合物的晶体结构。尽管化学式相同,但结构不同,这在很大程度上取决于碱土金属的性质。不同的阳离子决定了结构类型——钙化合物是具有Pnma空间基的TiNiSi家族的一部分,锶化合物与具有Cmce空间基的Na2LiAlP2同构,钡化合物在P4/nmm空间基中结晶为PbFCl结构类型。阴离子(硅或锗)只影响晶胞的大小,硅化物的晶胞体积比锗化物小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganics
Inorganics Chemistry-Inorganic Chemistry
CiteScore
2.80
自引率
10.30%
发文量
193
审稿时长
6 weeks
期刊介绍: Inorganics is an open access journal that covers all aspects of inorganic chemistry research. Topics include but are not limited to: synthesis and characterization of inorganic compounds, complexes and materials structure and bonding in inorganic molecular and solid state compounds spectroscopic, magnetic, physical and chemical properties of inorganic compounds chemical reactivity, physical properties and applications of inorganic compounds and materials mechanisms of inorganic reactions organometallic compounds inorganic cluster chemistry heterogenous and homogeneous catalytic reactions promoted by inorganic compounds thermodynamics and kinetics of significant new and known inorganic compounds supramolecular systems and coordination polymers bio-inorganic chemistry and applications of inorganic compounds in biological systems and medicine environmental and sustainable energy applications of inorganic compounds and materials MD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信