{"title":"Plant growth stages and weather index insurance design","authors":"Jing Zou, M. Odening, Ostap Okhrin","doi":"10.1017/s1748499523000167","DOIUrl":null,"url":null,"abstract":"\n Given the assumption that weather risks affect crop yields, we designed a weather index insurance product for soybean producers in the US state of Illinois. By separating the entire vegetation cycle into four growth stages, we investigate whether the phase-division procedure contributes to weather–yield loss relation estimation and, hence, to basis risk mitigation. Concretely, supposing stage-variant interaction patterns between temperature-based weather index growing degree days and rainfall-based weather index cumulative rainfall, a nonparametric weather–yield loss relation is estimated by a generalized additive model. The model includes penalized B-spline (P-spline) approach based on nonlinear optimal indemnity solutions under the expected utility framework. The P-spline analysis of variance (PS-ANOVA) method is used for efficient estimation through mixed model re-parameterization. The results indicate that the phase-division models significantly outperform the benchmark whole-cycle ones either under quadratic utility or exponential utility, given different levels of risk aversions. Finally, regarding hedging effectiveness, the expected utility ratio between the phase-division contract and the whole-cycle contract, and the percentage changes of mean root square loss and variance of revenues support the proposed phase-division contract.","PeriodicalId":44135,"journal":{"name":"Annals of Actuarial Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Actuarial Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1748499523000167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 1
Abstract
Given the assumption that weather risks affect crop yields, we designed a weather index insurance product for soybean producers in the US state of Illinois. By separating the entire vegetation cycle into four growth stages, we investigate whether the phase-division procedure contributes to weather–yield loss relation estimation and, hence, to basis risk mitigation. Concretely, supposing stage-variant interaction patterns between temperature-based weather index growing degree days and rainfall-based weather index cumulative rainfall, a nonparametric weather–yield loss relation is estimated by a generalized additive model. The model includes penalized B-spline (P-spline) approach based on nonlinear optimal indemnity solutions under the expected utility framework. The P-spline analysis of variance (PS-ANOVA) method is used for efficient estimation through mixed model re-parameterization. The results indicate that the phase-division models significantly outperform the benchmark whole-cycle ones either under quadratic utility or exponential utility, given different levels of risk aversions. Finally, regarding hedging effectiveness, the expected utility ratio between the phase-division contract and the whole-cycle contract, and the percentage changes of mean root square loss and variance of revenues support the proposed phase-division contract.