{"title":"Scenario-based measurement of interest rate risks","authors":"Sebastian Schlütter","doi":"10.1108/JRF-11-2020-0228","DOIUrl":null,"url":null,"abstract":"PurposeThis paper aims to propose a scenario-based approach for measuring interest rate risks. Many regulatory capital standards in banking and insurance make use of similar approaches. The authors provide a theoretical justification and extensive backtesting of our approach.Design/methodology/approachThe authors theoretically derive a scenario-based value-at-risk for interest rate risks based on a principal component analysis. The authors calibrate their approach based on the Nelson–Siegel model, which is modified to account for lower bounds for interest rates. The authors backtest the model outcomes against historical yield curve changes for a large number of generated asset–liability portfolios. In addition, the authors backtest the scenario-based value-at-risk against the stochastic model.FindingsThe backtesting results of the adjusted Nelson–Siegel model (accounting for a lower bound) are similar to those of the traditional Nelson–Siegel model. The suitability of the scenario-based value-at-risk can be substantially improved by allowing for correlation parameters in the aggregation of the scenario outcomes. Implementing those parameters is straightforward with the replacement of Pearson correlations by value-at-risk-implied tail correlations in situations where risk factors are not elliptically distributed.Research limitations/implicationsThe paper assumes deterministic cash flow patterns. The authors discuss the applicability of their approach, e.g. for insurance companies.Practical implicationsThe authors’ approach can be used to better communicate interest rate risks using scenarios. Discussing risk measurement results with decision makers can help to backtest stochastic-term structure models.Originality/valueThe authors’ adjustment of the Nelson–Siegel model to account for lower bounds makes the model more useful in the current low-yield environment when unjustifiably high negative interest rates need to be avoided. The proposed scenario-based value-at-risk allows for a pragmatic measurement of interest rate risks, which nevertheless closely approximates the value-at-risk according to the stochastic model.","PeriodicalId":46579,"journal":{"name":"Journal of Risk Finance","volume":"22 1","pages":"56-77"},"PeriodicalIF":5.7000,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Risk Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/JRF-11-2020-0228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 1
Abstract
PurposeThis paper aims to propose a scenario-based approach for measuring interest rate risks. Many regulatory capital standards in banking and insurance make use of similar approaches. The authors provide a theoretical justification and extensive backtesting of our approach.Design/methodology/approachThe authors theoretically derive a scenario-based value-at-risk for interest rate risks based on a principal component analysis. The authors calibrate their approach based on the Nelson–Siegel model, which is modified to account for lower bounds for interest rates. The authors backtest the model outcomes against historical yield curve changes for a large number of generated asset–liability portfolios. In addition, the authors backtest the scenario-based value-at-risk against the stochastic model.FindingsThe backtesting results of the adjusted Nelson–Siegel model (accounting for a lower bound) are similar to those of the traditional Nelson–Siegel model. The suitability of the scenario-based value-at-risk can be substantially improved by allowing for correlation parameters in the aggregation of the scenario outcomes. Implementing those parameters is straightforward with the replacement of Pearson correlations by value-at-risk-implied tail correlations in situations where risk factors are not elliptically distributed.Research limitations/implicationsThe paper assumes deterministic cash flow patterns. The authors discuss the applicability of their approach, e.g. for insurance companies.Practical implicationsThe authors’ approach can be used to better communicate interest rate risks using scenarios. Discussing risk measurement results with decision makers can help to backtest stochastic-term structure models.Originality/valueThe authors’ adjustment of the Nelson–Siegel model to account for lower bounds makes the model more useful in the current low-yield environment when unjustifiably high negative interest rates need to be avoided. The proposed scenario-based value-at-risk allows for a pragmatic measurement of interest rate risks, which nevertheless closely approximates the value-at-risk according to the stochastic model.
期刊介绍:
The Journal of Risk Finance provides a rigorous forum for the publication of high quality peer-reviewed theoretical and empirical research articles, by both academic and industry experts, related to financial risks and risk management. Articles, including review articles, empirical and conceptual, which display thoughtful, accurate research and be rigorous in all regards, are most welcome on the following topics: -Securitization; derivatives and structured financial products -Financial risk management -Regulation of risk management -Risk and corporate governance -Liability management -Systemic risk -Cryptocurrency and risk management -Credit arbitrage methods -Corporate social responsibility and risk management -Enterprise risk management -FinTech and risk -Insurtech -Regtech -Blockchain and risk -Climate change and risk