A Matrix-Eigenvalue Method to Compute Sturm-Liouville Polynomials

IF 0.4 Q4 MATHEMATICS
F. Leibsle, N. Rhee, M. Bani-Yaghoub
{"title":"A Matrix-Eigenvalue Method to Compute Sturm-Liouville Polynomials","authors":"F. Leibsle, N. Rhee, M. Bani-Yaghoub","doi":"10.35834/2022/3401019","DOIUrl":null,"url":null,"abstract":"Summary: Recently the Legendre and other Sturm-Liouville (SL) polynomials were found as eigenvectors of certain matrices. However, the proposed algorithms are computationally incomplete and do not lead to general formulas to calculate the coefficients of SL polynomials of any order. In this paper, we complete the algorithms based on a matrix-eigenvector method, which can be used to compute SL polynomials of any order. This includes Legendre, Hermite, Laguerre, and Chebyshev polynomials.","PeriodicalId":42784,"journal":{"name":"Missouri Journal of Mathematical Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Missouri Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35834/2022/3401019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Summary: Recently the Legendre and other Sturm-Liouville (SL) polynomials were found as eigenvectors of certain matrices. However, the proposed algorithms are computationally incomplete and do not lead to general formulas to calculate the coefficients of SL polynomials of any order. In this paper, we complete the algorithms based on a matrix-eigenvector method, which can be used to compute SL polynomials of any order. This includes Legendre, Hermite, Laguerre, and Chebyshev polynomials.
计算Sturm-Liouville多项式的矩阵特征值法
摘要:最近,勒让德多项式和其他斯特-刘维尔(SL)多项式被发现是某些矩阵的特征向量。然而,所提出的算法在计算上是不完整的,并且没有产生计算任何阶SL多项式系数的通用公式。在本文中,我们完成了基于矩阵特征向量方法的算法,该方法可用于计算任何阶的SL多项式。这包括勒让德多项式、埃尔米特多项式、拉盖尔多项式和切比雪夫多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
9
期刊介绍: Missouri Journal of Mathematical Sciences (MJMS) publishes well-motivated original research articles as well as expository and survey articles of exceptional quality in mathematical sciences. A section of the MJMS is also devoted to interesting mathematical problems and solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信