Full rotational symmetry from reflections or rotational symmetries in finitely many subspaces

IF 1.2 2区 数学 Q1 MATHEMATICS
G. Bianchi, R. Gardner, P. Gronchi
{"title":"Full rotational symmetry from reflections or rotational symmetries in finitely many subspaces","authors":"G. Bianchi, R. Gardner, P. Gronchi","doi":"10.1512/iumj.2022.71.9818","DOIUrl":null,"url":null,"abstract":"Two related questions are discussed. The first is when reflection symmetry in a finite set of $i$-dimensional subspaces, $i\\in \\{1,\\dots,n-1\\}$, implies full rotational symmetry, i.e., the closure of the group generated by the reflections equals $O(n)$. For $i=n-1$, this has essentially been solved by Burchard, Chambers, and Dranovski, but new results are obtained for $i\\in \\{1,\\dots,n-2\\}$. The second question, to which an essentially complete answer is given, is when (full) rotational symmetry with respect to a finite set of $i$-dimensional subspaces, $i\\in \\{1,\\dots,n-2\\}$, implies full rotational symmetry, i.e., the closure of the group generated by all the rotations about each of the subspaces equals $SO(n)$. The latter result also shows that a closed set in $\\mathbb{R}^n$ that is invariant under rotations about more than one axis must be a union of spheres with their centers at the origin.","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1512/iumj.2022.71.9818","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Two related questions are discussed. The first is when reflection symmetry in a finite set of $i$-dimensional subspaces, $i\in \{1,\dots,n-1\}$, implies full rotational symmetry, i.e., the closure of the group generated by the reflections equals $O(n)$. For $i=n-1$, this has essentially been solved by Burchard, Chambers, and Dranovski, but new results are obtained for $i\in \{1,\dots,n-2\}$. The second question, to which an essentially complete answer is given, is when (full) rotational symmetry with respect to a finite set of $i$-dimensional subspaces, $i\in \{1,\dots,n-2\}$, implies full rotational symmetry, i.e., the closure of the group generated by all the rotations about each of the subspaces equals $SO(n)$. The latter result also shows that a closed set in $\mathbb{R}^n$ that is invariant under rotations about more than one axis must be a union of spheres with their centers at the origin.
有限多个子空间中反射或旋转对称的全旋转对称性
讨论了两个相关问题。第一种是当有限组$i$维子空间$i\in\{1,\dots,n-1}$中的反射对称性意味着完全旋转对称性时,即反射生成的群的闭包等于$O(n)$。对于$i=n-1$,Burchard、Chambers和Dranovski基本上已经解决了这一问题,但对于$i\in\{1,\dots,n-2\}$获得了新的结果。第二个问题给出了一个基本上完全的答案,即关于有限组$i$维子空间$i\in\{1,\dots,n-2\}$的(完全)旋转对称性何时意味着完全旋转对称性,即,由关于每个子空间的所有旋转生成的群的闭包等于$SO(n)$。后一个结果还表明,$\mathbb{R}^n$中一个在绕多个轴旋转时不变的闭集必须是以原点为圆心的球体的并集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
52
审稿时长
4.5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信