On the nonlocal problems in time for subdiffusion equations with the Riemann-Liouville derivatives

IF 0.7 Q2 MATHEMATICS
R. Ashurov, Y. Fayziev
{"title":"On the nonlocal problems in time for subdiffusion equations with the Riemann-Liouville derivatives","authors":"R. Ashurov, Y. Fayziev","doi":"10.31489/2022m2/18-37","DOIUrl":null,"url":null,"abstract":"Initial boundary value problems with a time-nonlocal condition for a subdiffusion equation with the Riemann-Liouville time-fractional derivatives are considered. The elliptical part of the equation is the Laplace operator, defined in an arbitrary N−dimensional domain Ω with a sufficiently smooth boundary ∂Ω. The existence and uniqueness of the solution to the considered problems are proved. Inverse problems are studied for determining the right-hand side of the equation and a function in a time-nonlocal condition. The main research tool is the Fourier method, so the obtained results can be extended to subdiffusion equations with a more general elliptic operator.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2022m2/18-37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

Initial boundary value problems with a time-nonlocal condition for a subdiffusion equation with the Riemann-Liouville time-fractional derivatives are considered. The elliptical part of the equation is the Laplace operator, defined in an arbitrary N−dimensional domain Ω with a sufficiently smooth boundary ∂Ω. The existence and uniqueness of the solution to the considered problems are proved. Inverse problems are studied for determining the right-hand side of the equation and a function in a time-nonlocal condition. The main research tool is the Fourier method, so the obtained results can be extended to subdiffusion equations with a more general elliptic operator.
关于具有Riemann-Liouville导数的次扩散方程的非局部时间问题
研究一类具有Riemann-Liouville时间分数阶导数的次扩散方程具有时间非局部条件的初边值问题。方程的椭圆部分是拉普拉斯算子,定义在任意N维域Ω中,边界∂Ω足够光滑。证明了所考虑问题解的存在唯一性。研究了在时间非局部条件下确定方程和函数右侧的反问题。主要的研究工具是傅里叶方法,因此所得到的结果可以推广到具有更一般的椭圆算子的次扩散方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
50.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信