{"title":"On the nonlocal problems in time for subdiffusion equations with the Riemann-Liouville derivatives","authors":"R. Ashurov, Y. Fayziev","doi":"10.31489/2022m2/18-37","DOIUrl":null,"url":null,"abstract":"Initial boundary value problems with a time-nonlocal condition for a subdiffusion equation with the Riemann-Liouville time-fractional derivatives are considered. The elliptical part of the equation is the Laplace operator, defined in an arbitrary N−dimensional domain Ω with a sufficiently smooth boundary ∂Ω. The existence and uniqueness of the solution to the considered problems are proved. Inverse problems are studied for determining the right-hand side of the equation and a function in a time-nonlocal condition. The main research tool is the Fourier method, so the obtained results can be extended to subdiffusion equations with a more general elliptic operator.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2022m2/18-37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4
Abstract
Initial boundary value problems with a time-nonlocal condition for a subdiffusion equation with the Riemann-Liouville time-fractional derivatives are considered. The elliptical part of the equation is the Laplace operator, defined in an arbitrary N−dimensional domain Ω with a sufficiently smooth boundary ∂Ω. The existence and uniqueness of the solution to the considered problems are proved. Inverse problems are studied for determining the right-hand side of the equation and a function in a time-nonlocal condition. The main research tool is the Fourier method, so the obtained results can be extended to subdiffusion equations with a more general elliptic operator.