The mechanical implementations in three kinds of color-changing beetle elytra

IF 1.3 4区 工程技术 Q4 ENGINEERING, BIOMEDICAL
Wei Wu, Yueming Wang, Jiyu Sun
{"title":"The mechanical implementations in three kinds of color-changing beetle elytra","authors":"Wei Wu, Yueming Wang, Jiyu Sun","doi":"10.1680/jbibn.22.00074","DOIUrl":null,"url":null,"abstract":"With superior adaptability, some elytron as modified forewing can perform mechanical protection for underlying hindwing and soft body while conduct color-changing in dynamically natural environment. There are mainly three color-changing styles of angle dependence, irreversible and reversible color-changing for elytra. Here, Popillia indgigonacea Motsch, Sagra femorata purpurea Lichtenstein and Dynastes tityus were chosen to investigate the relationship between color formation of three color-changing styles and mechanical properties of light weight and high strength. The optical and nanomechanical properties of purplish red S. f. p. Lichtenstein were obtained through angle-resolved spectroscopy system and nanoindenter, respectively. In finite element analysis, three geometrical structure models of color-changing relevant, irrelevant and the whole elytron models were designed, and then mechanical properties of six coupled bionic models of each beetle were investigated. The multilayer, convex closures and photonic crystal in the epicuticle can complete the dynamic presentation of structural colors by interference, scattering and photonic band gap when resourcefully resist external forces in low/high stress and strain with high/small elastic modulus and hardness. Meanwhile, other microstructures of multilayer and trabecular hollow are reasonably constructed to cooperatively display mechanical properties of light weight and high strength.","PeriodicalId":48847,"journal":{"name":"Bioinspired Biomimetic and Nanobiomaterials","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspired Biomimetic and Nanobiomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jbibn.22.00074","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

With superior adaptability, some elytron as modified forewing can perform mechanical protection for underlying hindwing and soft body while conduct color-changing in dynamically natural environment. There are mainly three color-changing styles of angle dependence, irreversible and reversible color-changing for elytra. Here, Popillia indgigonacea Motsch, Sagra femorata purpurea Lichtenstein and Dynastes tityus were chosen to investigate the relationship between color formation of three color-changing styles and mechanical properties of light weight and high strength. The optical and nanomechanical properties of purplish red S. f. p. Lichtenstein were obtained through angle-resolved spectroscopy system and nanoindenter, respectively. In finite element analysis, three geometrical structure models of color-changing relevant, irrelevant and the whole elytron models were designed, and then mechanical properties of six coupled bionic models of each beetle were investigated. The multilayer, convex closures and photonic crystal in the epicuticle can complete the dynamic presentation of structural colors by interference, scattering and photonic band gap when resourcefully resist external forces in low/high stress and strain with high/small elastic modulus and hardness. Meanwhile, other microstructures of multilayer and trabecular hollow are reasonably constructed to cooperatively display mechanical properties of light weight and high strength.
三种变色甲虫鞘翅的机械实现
一些鞘翅虫作为改良前翅,在动态的自然环境中进行变色的同时,对下伏的后翅和柔软的身体进行机械保护,适应性强。鞘膜的变色方式主要有角度依赖型、不可逆型和可逆型三种。本文选用印度罂粟(Popillia indgigonacea Motsch)、李希滕斯坦仙人掌(Sagra femorata purpurea Lichtenstein)和蒂秋香(Dynastes tityus)研究了三种变色风格的颜色形成与轻质高强度力学性能之间的关系。通过角度分辨光谱系统和纳米压头分别获得了紫红色S.f.p.Lichtenstein的光学和纳米力学性能。在有限元分析中,设计了变色相关、无关和整个鞘翅管模型三个几何结构模型,并对每种甲虫的六个耦合仿生模型的力学性能进行了研究。在具有高/小弹性模量和硬度的低/高应力和应变下,表皮中的多层、凸闭合和光子晶体可以通过干涉、散射和光子带隙来完成结构颜色的动态呈现。同时,合理构建了多层和小梁中空的其他微观结构,以协同显示出轻质和高强度的力学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioinspired Biomimetic and Nanobiomaterials
Bioinspired Biomimetic and Nanobiomaterials ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
2.20
自引率
0.00%
发文量
12
期刊介绍: Bioinspired, biomimetic and nanobiomaterials are emerging as the most promising area of research within the area of biological materials science and engineering. The technological significance of this area is immense for applications as diverse as tissue engineering and drug delivery biosystems to biomimicked sensors and optical devices. Bioinspired, Biomimetic and Nanobiomaterials provides a unique scholarly forum for discussion and reporting of structure sensitive functional properties of nature inspired materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信