Kodaira dimension and zeros of holomorphic one-forms, revisited

Pub Date : 2021-02-16 DOI:10.4310/mrl.2022.v29.n6.a12
Mads Bach Villadsen
{"title":"Kodaira dimension and zeros of holomorphic one-forms, revisited","authors":"Mads Bach Villadsen","doi":"10.4310/mrl.2022.v29.n6.a12","DOIUrl":null,"url":null,"abstract":"We give a new proof that every holomorphic one-form on a smooth complex projective variety of general type must vanish at some point, first proven by Popa and Schnell using generic vanishing theorems for Hodge modules. Our proof relies on Simpson's results on the relation between rank one Higgs bundles and local systems of one-dimensional complex vectors spaces, and the structure of the cohomology jump loci in their moduli spaces.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2022.v29.n6.a12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We give a new proof that every holomorphic one-form on a smooth complex projective variety of general type must vanish at some point, first proven by Popa and Schnell using generic vanishing theorems for Hodge modules. Our proof relies on Simpson's results on the relation between rank one Higgs bundles and local systems of one-dimensional complex vectors spaces, and the structure of the cohomology jump loci in their moduli spaces.
分享
查看原文
全纯一形式的Kodaira维数和零点,重访
我们给出了一个新的证明,即一般类型的光滑复射影变种上的每一个全纯一形式都必须在某个点上消失,首先由Popa和Schnell利用Hodge模的一般消失定理证明了这一点。我们的证明依赖于Simpson关于秩为1的Higgs丛与一维复向量空间的局部系统之间的关系的结果,以及它们的模空间中的上同调跳跃轨迹的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信