Shifted Gegenbauer-Gauss Collocation Method for Solving Fractional Neutral Functional-Differential Equations with Proportional Delays

IF 1 Q1 MATHEMATICS
R. Hafez, Youssri Hassan Youssri
{"title":"Shifted Gegenbauer-Gauss Collocation Method for Solving Fractional Neutral Functional-Differential Equations with Proportional Delays","authors":"R. Hafez, Youssri Hassan Youssri","doi":"10.46793/kgjmat2206.981h","DOIUrl":null,"url":null,"abstract":"In this paper, the shifted Gegenbauer-Gauss collocation (SGGC) method is applied to fractional neutral functional-differential equations with proportional delays. The technique we have used is based on shifted Gegenbauer polynomials and Gauss quadrature integration. The shifted Gegenbauer-Gauss method reduces solving the generalized fractional pantograph equation fractional neutral functional-differential equations to a system of algebraic equations. Reasonable numerical results are obtained by selecting few shifted Gegenbauer-Gauss collocation points. Numerical results demonstrate its accuracy, and versatility of the proposed techniques.","PeriodicalId":44902,"journal":{"name":"Kragujevac Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kragujevac Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/kgjmat2206.981h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 17

Abstract

In this paper, the shifted Gegenbauer-Gauss collocation (SGGC) method is applied to fractional neutral functional-differential equations with proportional delays. The technique we have used is based on shifted Gegenbauer polynomials and Gauss quadrature integration. The shifted Gegenbauer-Gauss method reduces solving the generalized fractional pantograph equation fractional neutral functional-differential equations to a system of algebraic equations. Reasonable numerical results are obtained by selecting few shifted Gegenbauer-Gauss collocation points. Numerical results demonstrate its accuracy, and versatility of the proposed techniques.
求解具有比例时滞的分数中立型泛函微分方程的移位Gegenbauer-Gauss配点法
本文将移位Gegenbauer-Gauss配置(SGGC)方法应用于具有比例延迟的分数阶中立型泛函微分方程。我们使用的技术是基于移位的Gegenbauer多项式和高斯正交积分。移位Gegenbauer-Gauss方法将求解广义分数阶受电弓方程的分数阶中立泛函微分方程简化为一个代数方程组。选取少量移位的Gegenbauer-Gauss配点将得到合理的数值结果。数值结果证明了该方法的准确性和通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信