Crystalline Quantum Circuits

IF 11 Q1 PHYSICS, APPLIED
G. M. Sommers, D. Huse, M. Gullans
{"title":"Crystalline Quantum Circuits","authors":"G. M. Sommers, D. Huse, M. Gullans","doi":"10.1103/PRXQuantum.4.030313","DOIUrl":null,"url":null,"abstract":"Random quantum circuits continue to inspire a wide range of applications in quantum information science and many-body quantum physics, while remaining analytically tractable through probabilistic methods. Motivated by an interest in deterministic circuits with similar applications, we construct classes of \\textit{nonrandom} unitary Clifford circuits by imposing translation invariance in both time and space. Further imposing dual-unitarity, our circuits effectively become crystalline spacetime lattices whose vertices are SWAP or iSWAP two-qubit gates and whose edges may contain one-qubit gates. One can then require invariance under (subgroups of) the crystal's point group. Working on the square and kagome lattices, we use the formalism of Clifford quantum cellular automata to describe operator spreading, entanglement generation, and recurrence times of these circuits. A full classification on the square lattice reveals, of particular interest, a\"nonfractal good scrambling class\"with dense operator spreading that generates codes with linear contiguous code distance and high performance under erasure errors at the end of the circuit. We also break unitarity by adding spacetime-translation-invariant measurements and find a class of such circuits with fractal dynamics.","PeriodicalId":74587,"journal":{"name":"PRX quantum : a Physical Review journal","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX quantum : a Physical Review journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PRXQuantum.4.030313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 4

Abstract

Random quantum circuits continue to inspire a wide range of applications in quantum information science and many-body quantum physics, while remaining analytically tractable through probabilistic methods. Motivated by an interest in deterministic circuits with similar applications, we construct classes of \textit{nonrandom} unitary Clifford circuits by imposing translation invariance in both time and space. Further imposing dual-unitarity, our circuits effectively become crystalline spacetime lattices whose vertices are SWAP or iSWAP two-qubit gates and whose edges may contain one-qubit gates. One can then require invariance under (subgroups of) the crystal's point group. Working on the square and kagome lattices, we use the formalism of Clifford quantum cellular automata to describe operator spreading, entanglement generation, and recurrence times of these circuits. A full classification on the square lattice reveals, of particular interest, a"nonfractal good scrambling class"with dense operator spreading that generates codes with linear contiguous code distance and high performance under erasure errors at the end of the circuit. We also break unitarity by adding spacetime-translation-invariant measurements and find a class of such circuits with fractal dynamics.
晶体量子电路
随机量子电路继续在量子信息科学和多体量子物理中激发广泛的应用,同时通过概率方法保持分析可处理性。出于对具有类似应用的确定性电路的兴趣,我们通过在时间和空间上施加平移不变性来构造\textit{非随机}的幺正Clifford电路。进一步施加双一性,我们的电路有效地成为晶体时空晶格,其顶点是SWAP或iSWAP两个量子比特门,其边缘可能包含一个量子比特门。然后可以要求晶体点群(子群)下的不变性。在平方格和kagome格上,我们使用Clifford量子元胞自动机的形式来描述这些电路的算子扩展、纠缠产生和递归时间。在方晶格上的完全分类揭示了一个特别有趣的“非分形良好置乱类”,它具有密集的算子扩展,在电路末端擦除错误的情况下产生具有线性连续码距和高性能的码。我们还通过添加时空平移不变测量值来打破统一性,并找到一类具有分形动力学的这样的电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信