N. Gigli, C. Ketterer, Kazumasa Kuwada, Shin-ichi Ohta
{"title":"Rigidity for the spectral gap on Rcd(K, ∞)-spaces","authors":"N. Gigli, C. Ketterer, Kazumasa Kuwada, Shin-ichi Ohta","doi":"10.1353/ajm.2020.0039","DOIUrl":null,"url":null,"abstract":"Abstract:We consider a rigidity problem for the spectral gap of the Laplacian on an ${\\rm RCD}(K,\\infty)$-space (a metric measure space satisfying the Riemannian curvature-dimension condition) for positive $K$. For a weighted Riemannian manifold, Cheng-Zhou showed that the sharp spectral gap is achieved only when a $1$-dimensional Gaussian space is split off. This can be regarded as an infinite-dimensional counterpart to Obata's rigidity theorem. Generalizing to ${\\rm RCD}(K,\\infty)$-spaces is not straightforward due to the lack of smooth structure and doubling condition. We employ the lift of an eigenfunction to the Wasserstein space and the theory of regular Lagrangian flows recently developed by Ambrosio-Trevisan to overcome this difficulty.","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":"142 1","pages":"1559 - 1594"},"PeriodicalIF":1.7000,"publicationDate":"2020-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1353/ajm.2020.0039","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1353/ajm.2020.0039","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 22
Abstract
Abstract:We consider a rigidity problem for the spectral gap of the Laplacian on an ${\rm RCD}(K,\infty)$-space (a metric measure space satisfying the Riemannian curvature-dimension condition) for positive $K$. For a weighted Riemannian manifold, Cheng-Zhou showed that the sharp spectral gap is achieved only when a $1$-dimensional Gaussian space is split off. This can be regarded as an infinite-dimensional counterpart to Obata's rigidity theorem. Generalizing to ${\rm RCD}(K,\infty)$-spaces is not straightforward due to the lack of smooth structure and doubling condition. We employ the lift of an eigenfunction to the Wasserstein space and the theory of regular Lagrangian flows recently developed by Ambrosio-Trevisan to overcome this difficulty.
期刊介绍:
The oldest mathematics journal in the Western Hemisphere in continuous publication, the American Journal of Mathematics ranks as one of the most respected and celebrated journals in its field. Published since 1878, the Journal has earned its reputation by presenting pioneering mathematical papers. It does not specialize, but instead publishes articles of broad appeal covering the major areas of contemporary mathematics. The American Journal of Mathematics is used as a basic reference work in academic libraries, both in the United States and abroad.