L∞-Convergence Analysis of a Finite Element Linear Schwarz Alternating Method for a Class of Semi-Linear Elliptic PDEs

IF 0.7 Q2 MATHEMATICS
Q. Farei, M. Boulbrachene
{"title":"L∞-Convergence Analysis of a Finite Element Linear Schwarz Alternating Method for a Class of Semi-Linear Elliptic PDEs","authors":"Q. Farei, M. Boulbrachene","doi":"10.28924/2291-8639-21-2023-71","DOIUrl":null,"url":null,"abstract":"In this paper, we prove uniform convergence of the standard finite element method for a Schwarz alternating procedure for a class of semi-linear elliptic partial differential equations, in the context of linear iterations and non-matching grids. More precisely, making use of the subsolution-based concept, we prove that finite element Schwarz iterations converge, in the maximum norm, to the true solution of the PDE. We also give numerical results to validate the theory. This work introduces a new approach and generalizes the one in [14] as it encompasses a larger class of problems.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-21-2023-71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove uniform convergence of the standard finite element method for a Schwarz alternating procedure for a class of semi-linear elliptic partial differential equations, in the context of linear iterations and non-matching grids. More precisely, making use of the subsolution-based concept, we prove that finite element Schwarz iterations converge, in the maximum norm, to the true solution of the PDE. We also give numerical results to validate the theory. This work introduces a new approach and generalizes the one in [14] as it encompasses a larger class of problems.
一类半线性椭圆型偏微分方程有限元线性Schwarz交替方法的L∞-收敛性分析
本文在线性迭代和非匹配网格的背景下,证明了一类半线性椭圆型偏微分方程的Schwarz交替过程的标准有限元方法的一致收敛性。更确切地说,利用基于亚解的概念,我们证明了有限元Schwarz迭代在最大范数下收敛于PDE的真解。我们还给出了数值结果来验证理论。这项工作引入了一种新的方法,并推广了[14]中的方法,因为它包含了一类更大的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
10.00%
发文量
60
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信