Procedures of Leibnizian infinitesimal calculus: an account in three modern frameworks

IF 0.6 Q3 MATHEMATICS
J. Bair, Piotr Błaszczyk, R. Ely, M. Katz, Karl Kuhlemann
{"title":"Procedures of Leibnizian infinitesimal calculus: an account in three modern frameworks","authors":"J. Bair, Piotr Błaszczyk, R. Ely, M. Katz, Karl Kuhlemann","doi":"10.1080/26375451.2020.1851120","DOIUrl":null,"url":null,"abstract":"Recent Leibniz scholarship has sought to gauge which foundational framework provides the most successful account of the procedures of the Leibnizian calculus (LC). While many scholars (e.g. Ishiguro, Levey) opt for a default Weierstrassian framework, Arthur compares LC to a non-Archimedean framework SIA (Smooth Infinitesimal Analysis) of Lawvere–Kock–Bell. We analyze Arthur's comparison and find it rife with equivocations and misunderstandings on issues including the non-punctiform nature of the continuum, infinite-sided polygons, and the fictionality of infinitesimals. Rabouin and Arthur claim that Leibniz considers infinities as contradictory, and that Leibniz' definition of incomparables should be understood as nominal rather than as semantic. However, such claims hinge upon a conflation of Leibnizian notions of bounded infinity and unbounded infinity, a distinction emphasized by early Knobloch. The most faithful account of LC is arguably provided by Robinson's framework for infinitesimal analysis. We exploit an axiomatic framework for infinitesimal analysis SPOT to formalize LC.","PeriodicalId":36683,"journal":{"name":"British Journal for the History of Mathematics","volume":"36 1","pages":"170 - 209"},"PeriodicalIF":0.6000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/26375451.2020.1851120","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal for the History of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/26375451.2020.1851120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

Abstract

Recent Leibniz scholarship has sought to gauge which foundational framework provides the most successful account of the procedures of the Leibnizian calculus (LC). While many scholars (e.g. Ishiguro, Levey) opt for a default Weierstrassian framework, Arthur compares LC to a non-Archimedean framework SIA (Smooth Infinitesimal Analysis) of Lawvere–Kock–Bell. We analyze Arthur's comparison and find it rife with equivocations and misunderstandings on issues including the non-punctiform nature of the continuum, infinite-sided polygons, and the fictionality of infinitesimals. Rabouin and Arthur claim that Leibniz considers infinities as contradictory, and that Leibniz' definition of incomparables should be understood as nominal rather than as semantic. However, such claims hinge upon a conflation of Leibnizian notions of bounded infinity and unbounded infinity, a distinction emphasized by early Knobloch. The most faithful account of LC is arguably provided by Robinson's framework for infinitesimal analysis. We exploit an axiomatic framework for infinitesimal analysis SPOT to formalize LC.
Leibnizian无穷小微积分的过程:在三个现代框架中的解释
最近的莱布尼茨学术试图衡量哪一个基础框架对莱布尼茨微积分(LC)的过程提供了最成功的描述。虽然许多学者(如石黑一雄、李维)选择了默认的Weierstrassian框架,但Arthur将LC与Lawvere–Kock–Bell的非阿基米德框架SIA(平滑无限极小分析)进行了比较。我们分析了亚瑟的比较,发现它在连续体的非点状性质、无限边多边形和无穷小的虚构性等问题上充满了模棱两可和误解。Rabouin和Arthur声称,莱布尼茨认为无穷大是矛盾的,莱布尼兹对不可比的定义应该被理解为名义的,而不是语义的。然而,这些主张取决于莱布尼茨关于有界无穷大和无界无穷大的概念的融合,这是早期Knobloch强调的区别。对LC最忠实的描述可以说是由Robinson的无穷小分析框架提供的。我们利用一个公理化的无穷小分析框架SPOT来形式化LC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
British Journal for the History of Mathematics
British Journal for the History of Mathematics Arts and Humanities-History and Philosophy of Science
CiteScore
0.50
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信