Divisorial instability and Vojta’s main conjecture for $\mathbb{Q}$-Fano varieties

IF 0.5 4区 数学 Q3 MATHEMATICS
Nathan Grieve
{"title":"Divisorial instability and Vojta’s main conjecture for $\\mathbb{Q}$-Fano varieties","authors":"Nathan Grieve","doi":"10.4310/ajm.2020.v24.n6.a3","DOIUrl":null,"url":null,"abstract":"We study Diophantine arithmetic properties of birational divisors in conjunction with concepts that surround $\\mathrm{K}$-stability for Fano varieties. There is also an interpretation in terms of the barycentres of Newton-Okounkov bodies. Our main results show how the notion of divisorial instability, in the sense of K. Fujita, implies instances of Vojta's Main Conjecture for Fano varieties. A main tool in the proof of these results is an arithmetic form of Cartan's Second Main Theorem that has been obtained by M. Ru and P. Vojta.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ajm.2020.v24.n6.a3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We study Diophantine arithmetic properties of birational divisors in conjunction with concepts that surround $\mathrm{K}$-stability for Fano varieties. There is also an interpretation in terms of the barycentres of Newton-Okounkov bodies. Our main results show how the notion of divisorial instability, in the sense of K. Fujita, implies instances of Vojta's Main Conjecture for Fano varieties. A main tool in the proof of these results is an arithmetic form of Cartan's Second Main Theorem that has been obtained by M. Ru and P. Vojta.
$\mathbb{Q}$-Fano的分不稳定性和Vojta的主要猜想
我们结合围绕Fano变种的$\mathrm{K}$稳定性的概念,研究了对偶除数的丢番图算术性质。还有一个关于牛顿-奥昆科夫天体重心的解释。我们的主要结果表明,在藤田的意义上,除法不稳定性的概念如何暗示了Vojta对Fano变种的主要猜想的实例。证明这些结果的一个主要工具是M.Ru和P.Vojta获得的Cartan第二主要定理的算术形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes original research papers and survey articles on all areas of pure mathematics and theoretical applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信