Simulated and experimental investigation of the airfoil contour forming of 301 austenitic stainless steel considering the springback

IF 3.4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Reza Bagheinia, Aazam Ghassemi
{"title":"Simulated and experimental investigation of the airfoil contour forming of 301 austenitic stainless steel considering the springback","authors":"Reza Bagheinia,&nbsp;Aazam Ghassemi","doi":"10.1186/s40712-017-0087-1","DOIUrl":null,"url":null,"abstract":"<p>Metal forming has played a significant role in manufacturing development, thus investigations in the field of metal forming to improve the quality of the forming process are necessary. In the present study, the experimental and numerical analysis of airfoil contour forming of 301 austenitic stainless steel is examined in order to reduce the spring reversible ability under preheat temperature.</p><p>Considering the stress-strain properties of the preheat temperature; the body forming is simulated in ABAQUS software according to the theory of increasing the blank holder force during forming.</p><p>The obtained results of the spring-back for simulating the austenitic stainless steel airfoil are compared and investigated with the manufactured experimental sample results using deep tensile forming.</p><p>By comparing the results it can be seen that the control of blank holder force during forming cause to minimize the spring-back effects.</p>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2018-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40712-017-0087-1","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40712-017-0087-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

Abstract

Metal forming has played a significant role in manufacturing development, thus investigations in the field of metal forming to improve the quality of the forming process are necessary. In the present study, the experimental and numerical analysis of airfoil contour forming of 301 austenitic stainless steel is examined in order to reduce the spring reversible ability under preheat temperature.

Considering the stress-strain properties of the preheat temperature; the body forming is simulated in ABAQUS software according to the theory of increasing the blank holder force during forming.

The obtained results of the spring-back for simulating the austenitic stainless steel airfoil are compared and investigated with the manufactured experimental sample results using deep tensile forming.

By comparing the results it can be seen that the control of blank holder force during forming cause to minimize the spring-back effects.

Abstract Image

考虑回弹的301奥氏体不锈钢翼型成形模拟与实验研究
金属成形在制造业的发展中起着重要的作用,因此有必要对金属成形领域进行研究,以提高成形过程的质量。为了降低预加热温度下的弹簧可逆能力,对301奥氏体不锈钢翼型轮廓成形进行了实验和数值分析。考虑预热温度的应力-应变特性;根据成形过程中加大压边力的理论,在ABAQUS软件中对阀体成形过程进行了仿真。将得到的模拟奥氏体不锈钢翼型的回弹结果与用深度拉伸成形制造的实验样品结果进行了对比研究。通过对结果的比较可以看出,在成形过程中控制压边力可以使回弹效应最小化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
1
审稿时长
13 weeks
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信