Root systems, symmetries and linear representations of Artin groups

Q4 Mathematics
O. Geneste, Jean-Yves H'ee, L. Paris
{"title":"Root systems, symmetries and linear representations of Artin groups","authors":"O. Geneste, Jean-Yves H'ee, L. Paris","doi":"10.5802/ambp.381","DOIUrl":null,"url":null,"abstract":"Let $\\Gamma$ be a Coxeter graph, let $W$ be its associated Coxeter group, and let $G$ be a group of symmetries of $\\Gamma$.Recall that, by a theorem of H{\\'e}e and M\\\"uhlherr, $W^G$ is a Coxeter group associated to some Coxeter graph $\\hat \\Gamma$.We denote by $\\Phi^+$ the set of positive roots of $\\Gamma$ and by $\\hat \\Phi^+$ the set of positive roots of $\\hat \\Gamma$.Let $E$ be a vector space over a field $\\K$ having a basis in one-to-one correspondence with $\\Phi^+$.The action of $G$ on $\\Gamma$ induces an action of $G$ on $\\Phi^+$, and therefore on $E$.We show that $E^G$ contains a linearly independent family of vectors naturally in one-to-one correspondence with $\\hat \\Phi^+$ and we determine exactly when this family is a basis of $E^G$.This question is motivated by the construction of Krammer's style linear representations for non simply laced Artin groups.","PeriodicalId":52347,"journal":{"name":"Annales Mathematiques Blaise Pascal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques Blaise Pascal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/ambp.381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\Gamma$ be a Coxeter graph, let $W$ be its associated Coxeter group, and let $G$ be a group of symmetries of $\Gamma$.Recall that, by a theorem of H{\'e}e and M\"uhlherr, $W^G$ is a Coxeter group associated to some Coxeter graph $\hat \Gamma$.We denote by $\Phi^+$ the set of positive roots of $\Gamma$ and by $\hat \Phi^+$ the set of positive roots of $\hat \Gamma$.Let $E$ be a vector space over a field $\K$ having a basis in one-to-one correspondence with $\Phi^+$.The action of $G$ on $\Gamma$ induces an action of $G$ on $\Phi^+$, and therefore on $E$.We show that $E^G$ contains a linearly independent family of vectors naturally in one-to-one correspondence with $\hat \Phi^+$ and we determine exactly when this family is a basis of $E^G$.This question is motivated by the construction of Krammer's style linear representations for non simply laced Artin groups.
Artin群的根系统、对称性和线性表示
设$\Gamma$是Coxeter图,设$W$是其关联的Coxeter群,设$G$是$\Gamma的一组对称性。回想一下,通过H和M的一个定理\“呃,$W^G$是一个与某些Coxeter图$\hat\Gamma$相关的Coxeter群。我们用$\Phi^+$表示$\Gamma$的正根集,用$\hat\Phi^+$指示$\hat\ Gamma$的正根集。设$E$是域$\K$上的向量空间,其基与$\Phi ^+$一一对应。$G$对$\Gamma的作用会引起$G$在$\Phi-^+$上的作用,因此也会引起$E$的作用证明$E^G$包含一个与$\hat\Phi^+$自然一一对应的线性独立向量族,并且我们确切地确定了这个族何时是$E^G$的基。这个问题的动机是构造非单格Artin群的Krammer风格的线性表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Mathematiques Blaise Pascal
Annales Mathematiques Blaise Pascal Mathematics-Algebra and Number Theory
CiteScore
0.50
自引率
0.00%
发文量
9
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信