On the focusing generalized Hartree equation

IF 0.4 Q4 MATHEMATICS, APPLIED
A. Arora, S. Roudenko, Kai Yang
{"title":"On the focusing generalized Hartree equation","authors":"A. Arora, S. Roudenko, Kai Yang","doi":"10.5206/mase/10855","DOIUrl":null,"url":null,"abstract":"In this paper we give a review of the recent progress on the focusing generalized Hartree equation, which is a nonlinear Schrodinger-type equation with the nonlocal nonlinearity, expressed as a convolution with the Riesz potential. We describe the local well-posedness in H1 and Hs settings, discuss the extension to the global existence and scattering, or finite time blow-up. We point out different techniques used to obtain the above results, and then show the numerical investigations of the stable blow-up in the L2 -critical setting. We finish by showing known analytical results about the stable blow-up dynamics in the L2 -critical setting.","PeriodicalId":93797,"journal":{"name":"Mathematics in applied sciences and engineering","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in applied sciences and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5206/mase/10855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we give a review of the recent progress on the focusing generalized Hartree equation, which is a nonlinear Schrodinger-type equation with the nonlocal nonlinearity, expressed as a convolution with the Riesz potential. We describe the local well-posedness in H1 and Hs settings, discuss the extension to the global existence and scattering, or finite time blow-up. We point out different techniques used to obtain the above results, and then show the numerical investigations of the stable blow-up in the L2 -critical setting. We finish by showing known analytical results about the stable blow-up dynamics in the L2 -critical setting.
关于聚焦广义Hartree方程
本文综述了聚焦广义Hartree方程的最新进展,该方程是一个具有非局部非线性的非线性薛定谔型方程,表示为与Riesz势的卷积。我们描述了H1和Hs设置中的局部适定性,讨论了全局存在性和散射或有限时间爆破的扩展。我们指出了用于获得上述结果的不同技术,然后展示了在L2临界设置下稳定爆破的数值研究。最后,我们展示了关于L2临界环境下稳定爆破动力学的已知分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信