Certain Fourier operators on GL1 and local Langlands gamma functions

Pub Date : 2021-08-08 DOI:10.2140/pjm.2022.318.339
Dihua Jiang, Zhilin Luo
{"title":"Certain Fourier operators on GL1 and local\nLanglands gamma functions","authors":"Dihua Jiang, Zhilin Luo","doi":"10.2140/pjm.2022.318.339","DOIUrl":null,"url":null,"abstract":". For a split reductive group G over a number field k , let ρ be an n -dimensional complex representation of its complex dual group G ∨ ( C ). For any irreducible cuspidal automorphic representation σ of G ( A ), where A is the ring of adeles of k , in [JL21], the authors introduce the ( σ, ρ )-Schwartz space S σ,ρ ( A × ) and ( σ, ρ )-Fourier operator F σ,ρ , and study the ( σ, ρ, ψ )-Poisson summation formula on GL 1 , under the assumption that the local Langlands functoriality holds for the pair ( G, ρ ) at all local places of k , where ψ is a non-trivial additive character of k \\ A . Such general formulae on GL 1 , as a vast generalization of the classical Poisson summation formula, are expected to be responsible for the Langlands conjecture ([ L70]) on global functional equation for the automorphic L -functions L ( s, σ, ρ ). In order to understand such Poisson summation formulae, we continue with [JL21] and develop a further local theory related to the ( σ, ρ )-Schwartz space S σ,ρ ( A × ) and ( σ, ρ )-Fourier operator F σ,ρ . More precisely, over any local field k ν of k , we define distribution kernel functions k σ ν ,ρ,ψ ν ( x ) on GL 1 that represent the ( σ ν , ρ )-Fourier operators F σ ν ,ρ,ψ ν as convolution integral operators, i.e. generalized Hankel transforms, and the local Langlands γ -functions γ ( s, σ ν , ρ, ψ ν ) as Mellin transform of the kernel functions. As a consequence, we show that any local Langlands γ -functions are the gamma functions in the sense of I. and I. Piatetski-Shapiro in [GGPS] and of A. Weil in [W66].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2022.318.339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

. For a split reductive group G over a number field k , let ρ be an n -dimensional complex representation of its complex dual group G ∨ ( C ). For any irreducible cuspidal automorphic representation σ of G ( A ), where A is the ring of adeles of k , in [JL21], the authors introduce the ( σ, ρ )-Schwartz space S σ,ρ ( A × ) and ( σ, ρ )-Fourier operator F σ,ρ , and study the ( σ, ρ, ψ )-Poisson summation formula on GL 1 , under the assumption that the local Langlands functoriality holds for the pair ( G, ρ ) at all local places of k , where ψ is a non-trivial additive character of k \ A . Such general formulae on GL 1 , as a vast generalization of the classical Poisson summation formula, are expected to be responsible for the Langlands conjecture ([ L70]) on global functional equation for the automorphic L -functions L ( s, σ, ρ ). In order to understand such Poisson summation formulae, we continue with [JL21] and develop a further local theory related to the ( σ, ρ )-Schwartz space S σ,ρ ( A × ) and ( σ, ρ )-Fourier operator F σ,ρ . More precisely, over any local field k ν of k , we define distribution kernel functions k σ ν ,ρ,ψ ν ( x ) on GL 1 that represent the ( σ ν , ρ )-Fourier operators F σ ν ,ρ,ψ ν as convolution integral operators, i.e. generalized Hankel transforms, and the local Langlands γ -functions γ ( s, σ ν , ρ, ψ ν ) as Mellin transform of the kernel functions. As a consequence, we show that any local Langlands γ -functions are the gamma functions in the sense of I. and I. Piatetski-Shapiro in [GGPS] and of A. Weil in [W66].
分享
查看原文
GL1和localLanglands-gamma函数上的某些傅立叶算子
.对于数域k上的分裂还原群G,设ρ是其复对偶群G∧(C)的n维复表示。对于G(A)的任何不可约尖自同构表示σ,其中A是k的adeles环,在[JL21]中,作者引入了(σ,ρ)-Swartz空间Sσ,ρ(A×)和(σ,ω)-Fourier算子Fσ,ρ,并研究了GL 1上的(σ,在假定对(G,ρ)在k的所有局部位置上的局部Langlands泛函成立的情况下,其中ψ是k\a的一个非平凡加性特征。作为经典泊松求和公式的广泛推广,GL1上的这些通式有望负责自同构L-函数L(s,σ,ρ)的全局函数方程上的Langlands猜想([L70])。为了理解这种泊松求和公式,我们继续使用[JL21],并进一步发展了与(σ,ρ)-Swartz空间Sσ,ρ(a×)和(σ,ω)-Fourier算子Fσ,ρ有关的局部理论。更准确地说,在k的任何局部域k∈上,我们定义了GL 1上的分布核函数kσ∈,ρ,ψ∈(x),其表示(σ∈、ρ)-傅立叶算子FσΓ、ρ、ψΓ为卷积积分算子,即广义Hankel变换,以及局部Langlandsγ函数γ(s,σ∈)为核函数的Mellin变换。因此,我们证明了任何局部Langlandsγ-函数都是[GGPS]中的I.和I.Piatetski Shapiro以及[W66]中的a.Weil意义上的γ函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信