Observations from C-Band SAR Fully Polarimetric Parameters of Mobile Sea Ice Based on Radar Scattering Mechanisms to Support Operational Sea Ice Monitoring
M. Shokr, M. Dabboor, Mélanie Lacelle, Tom Zagon, B. Deschamps
{"title":"Observations from C-Band SAR Fully Polarimetric Parameters of Mobile Sea Ice Based on Radar Scattering Mechanisms to Support Operational Sea Ice Monitoring","authors":"M. Shokr, M. Dabboor, Mélanie Lacelle, Tom Zagon, B. Deschamps","doi":"10.1080/07038992.2021.2003701","DOIUrl":null,"url":null,"abstract":"Abstract Fully polarimetric (FP) SAR systems offer parameters that describe and quantify the scattering mechanisms from the surface cover. These are usually derived from decomposition of matrices derived from the original scattering matrix from observations at each pixel. Power from scattering mechanisms have potential for retrieval of sea ice information, which cannot be derived using traditional backscatter (magnitude or phase) measured by single- or dual-polarization SAR systems. This study investigates the potential of selected FP parameters that represent the power of three scattering mechanisms, in addition to the total power, in identifying ice types and surface features for operational use. Parameters were obtained from a set of 62 RADARSAT-2 Quad-pol data over Resolute Passage, central Arctic, during the period September-December 2017. A scattering-based color-composite scheme was developed. Analysis of the examined color images was supported by information from regional ice charts and SAR image interpretations from the Canadian Ice Service. Case studies are presented to demonstrate the potential of the proposed color-composite tool. Open water, new ice, multi-year ice and a few surface features including rafted, ridged and smooth/rough surfaces can be identified better in the color images. Physical interpretation of the relative power from the given scattering mechanisms is explained for the relevant ice types and surfaces.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07038992.2021.2003701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract Fully polarimetric (FP) SAR systems offer parameters that describe and quantify the scattering mechanisms from the surface cover. These are usually derived from decomposition of matrices derived from the original scattering matrix from observations at each pixel. Power from scattering mechanisms have potential for retrieval of sea ice information, which cannot be derived using traditional backscatter (magnitude or phase) measured by single- or dual-polarization SAR systems. This study investigates the potential of selected FP parameters that represent the power of three scattering mechanisms, in addition to the total power, in identifying ice types and surface features for operational use. Parameters were obtained from a set of 62 RADARSAT-2 Quad-pol data over Resolute Passage, central Arctic, during the period September-December 2017. A scattering-based color-composite scheme was developed. Analysis of the examined color images was supported by information from regional ice charts and SAR image interpretations from the Canadian Ice Service. Case studies are presented to demonstrate the potential of the proposed color-composite tool. Open water, new ice, multi-year ice and a few surface features including rafted, ridged and smooth/rough surfaces can be identified better in the color images. Physical interpretation of the relative power from the given scattering mechanisms is explained for the relevant ice types and surfaces.