{"title":"Sample size and power analysis for stepped wedge cluster randomised trials with binary outcomes","authors":"Jijia Wang, Jing Cao, Song Zhang, C. Ahn","doi":"10.1080/24754269.2021.1904094","DOIUrl":null,"url":null,"abstract":"In stepped wedge cluster randomised trials (SW-CRTs), clusters of subjects are randomly assigned to sequences, where they receive a specific order of treatments. Compared to conventional cluster randomised studies, one unique feature of SW-CRTs is that all clusters start from control and gradually transition to intervention according to the randomly assigned sequences. This feature mitigates the ethical concern of withholding an effective treatment and reduces the logistic burden of implementing the intervention at multiple clusters simultaneously. This feature, however, presents challenges that need to be addressed in experimental design and data analysis, i.e., missing data due to prolonged follow-up and complicated correlation structures that involve between-subject and longitudinal correlations. In this study, based on the generalised estimating equation (GEE) approach, we present a closed-form sample size formula for SW-CRTs with a binary outcome, which offers great flexibility to account for unbalanced randomisation, missing data, and arbitrary correlation structures. We also present a correction approach to address the issue of under-estimated variance by GEE estimator when the sample size is small. Simulation studies and application to a real clinical trial are presented.","PeriodicalId":22070,"journal":{"name":"Statistical Theory and Related Fields","volume":"5 1","pages":"162 - 169"},"PeriodicalIF":0.7000,"publicationDate":"2021-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24754269.2021.1904094","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Theory and Related Fields","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/24754269.2021.1904094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1
Abstract
In stepped wedge cluster randomised trials (SW-CRTs), clusters of subjects are randomly assigned to sequences, where they receive a specific order of treatments. Compared to conventional cluster randomised studies, one unique feature of SW-CRTs is that all clusters start from control and gradually transition to intervention according to the randomly assigned sequences. This feature mitigates the ethical concern of withholding an effective treatment and reduces the logistic burden of implementing the intervention at multiple clusters simultaneously. This feature, however, presents challenges that need to be addressed in experimental design and data analysis, i.e., missing data due to prolonged follow-up and complicated correlation structures that involve between-subject and longitudinal correlations. In this study, based on the generalised estimating equation (GEE) approach, we present a closed-form sample size formula for SW-CRTs with a binary outcome, which offers great flexibility to account for unbalanced randomisation, missing data, and arbitrary correlation structures. We also present a correction approach to address the issue of under-estimated variance by GEE estimator when the sample size is small. Simulation studies and application to a real clinical trial are presented.