{"title":"The strength for line bundles","authors":"E. Ballico, Emanuele Ventura","doi":"10.7146/math.scand.a-128529","DOIUrl":null,"url":null,"abstract":"We introduce the strength for sections of a line bundle on an algebraic variety. This generalizes the strength of homogeneous polynomials that has been recently introduced to resolve Stillman's conjecture, an important problem in commutative algebra. We establish the first properties of this notion and give some tool to obtain upper bounds on the strength in this framework. Moreover, we show some results on the usual strength such as the reducibility of the set of strength two homogeneous polynomials.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-128529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
We introduce the strength for sections of a line bundle on an algebraic variety. This generalizes the strength of homogeneous polynomials that has been recently introduced to resolve Stillman's conjecture, an important problem in commutative algebra. We establish the first properties of this notion and give some tool to obtain upper bounds on the strength in this framework. Moreover, we show some results on the usual strength such as the reducibility of the set of strength two homogeneous polynomials.