Arithmetic occult period maps

IF 1.2 1区 数学 Q1 MATHEMATICS
Jeff Achter
{"title":"Arithmetic occult period maps","authors":"Jeff Achter","doi":"10.14231/AG-2020-021","DOIUrl":null,"url":null,"abstract":"Several natural complex configuration spaces admit surprising uniformizations as arithmetic ball quotients, by identifying each parametrized object with the periods of some auxiliary object. In each case, the theory of canonical models of Shimura varieties gives the ball quotient the structure of a variety over the ring of integers of a cyclotomic field. We show that the (transcendentally-defined) period map actually respects these algebraic structures, and thus that occult period maps are arithmetic. As an intermediate tool, we develop an arithmetic theory of lattice-polarized K3 surfaces.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/AG-2020-021","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Several natural complex configuration spaces admit surprising uniformizations as arithmetic ball quotients, by identifying each parametrized object with the periods of some auxiliary object. In each case, the theory of canonical models of Shimura varieties gives the ball quotient the structure of a variety over the ring of integers of a cyclotomic field. We show that the (transcendentally-defined) period map actually respects these algebraic structures, and thus that occult period maps are arithmetic. As an intermediate tool, we develop an arithmetic theory of lattice-polarized K3 surfaces.
算术隐期图
通过用辅助对象的周期来识别每个参数化对象,一些自然的复构形空间承认了令人惊讶的算术球商均匀化。在每种情况下,志村变数的正则模型理论给出了分环场整数环上变数的球商结构。我们证明(超越定义的)周期映射实际上尊重这些代数结构,因此隐周期映射是算术的。作为一种中间工具,我们发展了晶格极化K3曲面的算术理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebraic Geometry
Algebraic Geometry Mathematics-Geometry and Topology
CiteScore
2.40
自引率
0.00%
发文量
25
审稿时长
52 weeks
期刊介绍: This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信