{"title":"Arithmetic occult period maps","authors":"Jeff Achter","doi":"10.14231/AG-2020-021","DOIUrl":null,"url":null,"abstract":"Several natural complex configuration spaces admit surprising uniformizations as arithmetic ball quotients, by identifying each parametrized object with the periods of some auxiliary object. In each case, the theory of canonical models of Shimura varieties gives the ball quotient the structure of a variety over the ring of integers of a cyclotomic field. We show that the (transcendentally-defined) period map actually respects these algebraic structures, and thus that occult period maps are arithmetic. As an intermediate tool, we develop an arithmetic theory of lattice-polarized K3 surfaces.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/AG-2020-021","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
Several natural complex configuration spaces admit surprising uniformizations as arithmetic ball quotients, by identifying each parametrized object with the periods of some auxiliary object. In each case, the theory of canonical models of Shimura varieties gives the ball quotient the structure of a variety over the ring of integers of a cyclotomic field. We show that the (transcendentally-defined) period map actually respects these algebraic structures, and thus that occult period maps are arithmetic. As an intermediate tool, we develop an arithmetic theory of lattice-polarized K3 surfaces.
期刊介绍:
This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.